

Programa de productos 2023

Válvulas i Accionadores i Automatización

Índice

ACTAIR EVO AKG-A/AKGS-A	73		25		65
		ECOLINE GLV 150-300	35	PROFIN-VT2H	0,5
AKG-A/AKGS-A					67
	46	ECOLINE GT 40	45	PROFIN-VT3 Gas	67
AKR/AKRS	54	ECOLINE GTB 800	46		
				O . T . AO AOL (CO	70
ALP 1000	77	ECOLINE GTC 150-600	47	QuarterTurn AQ, AQL / SQ	72
ALP 2000	78	ECOLINE GTF 150-600	47		
				DCC	
ALS 200	76	ECOLINE GTF 800	47	RGS	52
AMTROBOX	76	ECOLINE GTR16p/GTR16o	45	RJN	53
		•			
AMTROBOX ATEX Zone 22	76	ECOLINE GTV 150-300	47	RYN	53
AMTROBOX Ex ia	76	ECOLINE PTF 150-600	52		
				C/CD/CD	71
AMTROBOX M	76	ECOLINE PTF 800	52	S/SR/SP	71
AMTROBOX R	77	ECOLINE RA16	51	SERIE 2000	55
AMTROBOX R Ex ia	77	ECOLINE RA40	51	SICCA 150-2500 GTF	48
AMTRONIC U	77	ECOLINE SCC 150-600	56	SICCA 150-4500 GLF	35
AMTRONIC U Ex ia	78	ECOLINE SCF 150-600	56	SICCA 150-4500 PCF	53
APORIS-DEB02	61	ECOLINE SCF 800	56	SICCA 150-600 GLC	35
7 (I OTAIS DEDOE	0.				
		ECOLINE SCV 150-300	56	SICCA 150-600 GTC	47
BOACHEM-FSA	58	ECOLINE SP	45	SICCA 150-600 SCC	57
BOACHEM-RXA	52	ECOLINE VA16	34	SICCA 900-2500 GLC	35
BOACHEM-ZXA	34	ECOLINE VA40	34	SICCA 900-3600 GTC	48
BOACHEM-ZXAB/ZYAB	32	ECOLINE WT/WTI	54	SICCA 900-3600 SCC	57
BOA-Compact	30	ECOLINE XLC	42	SISTO-16	67
•					
BOA-Compact EKB	30	EMO	75	SISTO-16RGAMaXX	68
BOA-Control DPR	41			SISTO-16S	68
		E'll MAN 46			
BOA-Control PIC	41	Filtro Y PN 16	59	SISTO-16TWA	68
BOA-Control SBV	41			SISTO-20	68
		LIEDA DD	40		
BOA-Control/BOA-Control IMS	41	HERA-BD	49	SISTO-20NA	69
BOA-CVE C/CS/W/IMS/EKB/IMS EKB	37	HERA-BDS	49	SISTO-C	68
BOA-CVE H	37	HERA-BHT	49	SISTO-C LAP	74
BOA-CVP H	37	HERA-SH	49	SISTO-DrainNA	69
BOA-H	31	HQ EVO	73	SISTO-KB	67
BOA-H/HE/HV/HEV	31			SISTO-KRVNA	44
		160011 10116			
BOA-R	51	ISORIA 10/16	60	SISTO-LAD	74
BOA-RFV	50	ISORIA 20/25	60	SISTO-LAE	72
BOA-RPL/RPL F-F	50	IVC-EST, -VET	66	SISTO-LAP	74
BOA-RVK	51			SISTO-RSK/RSKS	55
BOA-S	58	KE	61	SISTO-RSKNA	57
BOA-SuperCompact	30			SISTO-VentNA	44
BOAVENT-AVF	43	LYNX 3 F - RFP	43	SMARTRONIC U MA	78
BOAVENT-SIF	43			SMARTRONIC U PC	79
BOAVENT-SVA	43	MAMMOUTH	60	SMARTRONIC U AS-i	78
BOAVENT-SVF	43	MC	71	SR 20.40	50
BOA-W	30	MIL 10000	37	STAAL 100 AKD/AKDS	46
BOAX-B	60	MIL 21000	38	STAAL 100 AKK/AKKS	54
BOAX-CBV13	59	MIL 27000	38	STAAL 40 AKD/AKDS	45
BOAX-S/SF	60	MIL 29000	38	STAAL 40 AKK/AKKS	54
BOAK 3/31	00			STARE TO ARROARDS	37
		MIL 37-38	74		
CLOSSIA	63	MIL 41000	38	T	72
COBRA-SGP/SGO	44	MIL 50000	38	TRIODIS 150	63
COBRA-SMP	45	MIL 67-68	74	TRIODIS 300	63
	58	MIL 70000	39	TRIODIS 600	63
COBRA-TDC01/03	42	MIL 71000	39		
	4/	11112 7 1000			
CONDA-VLC	42	BAU 70000			40
	42 42	MIL 76000	39	UGS	48
CONDA-VLC CONDA-VRC	42		39	UGS	48
CONDA-VLC CONDA-VRC CONDA-VSM	42 42	MIL 77000	39 39		
CONDA-VLC CONDA-VRC	42		39	UGS Válvulas de globo NUCA	48 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM	42 42 71	MIL 77000 MIL 78000	39 39 39	Válvulas de globo NUCA	36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK	42 42 71 50	MIL 77000 MIL 78000 MIL 81000	39 39 39 40		
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM	42 42 71	MIL 77000 MIL 78000	39 39 39	Válvulas de globo NUCA	36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK	42 42 71 50	MIL 77000 MIL 78000 MIL 81000 MIL 90000	39 39 39 40 40	Válvulas de globo NUCA Válvulas de retención NUCA	36 53
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL	42 42 71 50 50	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000	39 39 39 40 40 40	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA	36 53 44
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150	42 42 71 50 50	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II	39 39 39 40 40 40 40	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM	36 53 44 69
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL	42 42 71 50 50	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000	39 39 39 40 40 40	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA	36 53 44
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO	42 42 71 50 50	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS	39 39 39 40 40 40 64 71	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN	36 53 44 69 57
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO AIR	42 42 71 50 50 61 62 62	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II	39 39 39 40 40 40 40	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS	36 53 44 69 57 55
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO	42 42 71 50 50	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS	39 39 39 40 40 40 64 71	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS	36 53 44 69 57 55
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII	42 42 71 50 50 61 62 62 61	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS	39 39 39 40 40 40 64 71 72	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN	36 53 44 69 57 55 48
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS	42 42 71 50 50 61 62 62 61 64	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS	39 39 39 40 40 40 64 71 72	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS	36 53 44 69 57 55 48 46
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII	42 42 71 50 50 61 62 62 61	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS	39 39 39 40 40 40 64 71 72	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN	36 53 44 69 57 55 48
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS	42 42 71 50 50 61 62 62 61 64	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS	39 39 39 40 40 40 64 71 72	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB	36 53 44 69 57 55 48 46 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO	42 42 71 50 50 61 62 62 61 64 73	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXS	39 39 39 40 40 64 71 72 52 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO	42 42 71 50 50 61 62 62 61 64 73	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS	39 39 39 40 40 64 71 72 52 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS GRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300	42 42 71 50 50 61 62 62 61 64 73	MIL 77000 MIL 78000 MIL 81000 MIL 91000 MIL 91000 MIP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV	39 39 39 40 40 64 71 72 52 33 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB	36 53 44 69 57 55 48 46 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T	42 42 71 50 50 61 62 62 61 64 73	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS	39 39 39 40 40 40 64 71 72 52 33 33 33 58	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS GRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300	42 42 71 50 50 61 62 62 61 64 73	MIL 77000 MIL 78000 MIL 81000 MIL 91000 MIL 91000 MIP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV	39 39 39 40 40 64 71 72 52 33 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000	42 42 71 50 50 61 62 62 61 64 73 62 62 62 66	MIL 77000 MIL 78000 MIL 81000 MIL 91000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS	39 39 39 40 40 64 71 72 52 33 33 33 58 51	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300	42 42 71 50 50 61 62 62 61 64 73 62 62 66 66 64	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXL/ZXS	39 39 39 40 40 64 71 72 52 33 33 33 58 51	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000	42 42 71 50 50 61 62 62 61 64 73 62 62 62 66	MIL 77000 MIL 78000 MIL 81000 MIL 91000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS	39 39 39 40 40 64 71 72 52 33 33 33 58 51	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 54	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXL/ZXS NORI 40 ZXL/ZXS	39 39 39 40 40 64 71 72 52 33 33 33 58 51 32 31	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 54 55	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXLBV/ZXSB NORI 40 ZXLBV/ZXSB NORI 40 ZXLBV/ZXSB	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 54	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXL/ZXS NORI 40 ZXL/ZXS	39 39 39 40 40 64 71 72 52 33 33 33 58 51 32 31	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLE/ZXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSSBV NORI 40 ZXLB/ZXSSBV NORI 40 ZXLE/ZXSF	39 39 39 40 40 64 71 72 52 33 33 33 58 51 32 31 31	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 56	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB	39 39 39 40 40 40 64 71 72 52 33 33 58 51 32 31 31 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLE/ZXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSSBV NORI 40 ZXLB/ZXSSBV NORI 40 ZXLE/ZXSF	39 39 39 40 40 64 71 72 52 33 33 33 58 51 32 31 31	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE DC 300 ECOLINE DC 300 ECOLINE EST 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB	39 39 39 40 40 40 64 71 72 52 33 33 58 51 32 31 31 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYC 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYC 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59	MIL 77000 MIL 78000 MIL 78000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXS NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXL/ZXS NORI 40 ZXLBV/ZXSB NORI 40 ZXLBV/ZXSB NORI 40 ZXLBV/ZXSB NORI 40 ZXLBV/ZXSF NORI 40 ZXLBV/ZXSF NORI 40 ZYLBV/ZXSF NORI 40 ZYLBV/ZYSB NORI 40 ZYLB/ZYSB NORI 40 ZYLB/ZYSB NORI 500 ZXSV	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE FYF 800	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 55 56 65 59	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB	39 39 39 40 40 40 64 71 72 52 33 33 58 51 32 31 31 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE FYF 800 ECOLINE GE1/GE2/GE3	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59 59 69	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXLIZXS NORI 160 ZXLIZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXLIZXS NORI 40 ZXLIZXSB NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 500 ZXSV OM	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE FYF 800	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 55 56 65 59	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXLIZXS NORI 160 ZXLIZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXLIZXS NORI 40 ZXLIZXSB NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 500 ZXSV OM	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLT 150-300 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE FYF 800 ECOLINE GE1/GE2/GE3 ECOLINE GE4	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 56 65 59 59 69 70	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSF NORI 40 ZXLB/ZXSF NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB NORI 500 ZXSV OM PROFIN SI3	39 39 39 40 40 64 71 72 52 33 33 33 58 51 32 31 31 33 31 33	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYF 800 ECOLINE FYF 800 ECOLINE GE4 ECOLINE GE4 ECOLINE GE4 ECOLINE GE64 ECOLINE GIBO 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59 59 69 70 46	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXLIZXS NORI 160 ZXLIZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXLIZXS NORI 40 ZXLIZXSB NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 40 ZXLIZXSF NORI 500 ZXSV OM	39 39 39 40 40 40 64 71 72 52 33 33 33 58 51 32 31 31 33 37 22 66 64	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 300 ECOLINE EST 150-600 ECOLINE FYF 800 ECOLINE FYF 800 ECOLINE GE4 ECOLINE GE4 ECOLINE GE4 ECOLINE GE64 ECOLINE GIBO 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59 59 69 70 46	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLF/ZXSF NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSF NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1	39 39 39 40 40 40 64 71 72 52 33 33 33 58 51 32 31 31 33 37 22 66 64	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300 ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 150 ECOLINE DC 300 ECOLINE FYT 800 ECOLINE FYF 800 ECOLINE GE1/GE2/GE3 ECOLINE GE4 ECOLINE GIBO 150-600 ECOLINE GIBO 150-600 ECOLINE GIBO 150-600 ECOLINE GIBO 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59 59 69 70 46 32	MIL 77000 MIL 78000 MIL 78000 MIL 81000 MIL 91000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXL/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZYSB NORI 40 ZXLB/ZYSB NORI 40 ZYLB/ZYSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1 PROFIN VT2L	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 72	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS TO DANAÏS CRYO DANAÏS WITH DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300 ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 500 ECOLINE FYC 150-600 ECOLINE FYF 800 ECOLINE GE1/GE2/GE3 ECOLINE GE4 ECOLINE GBB 150-600 ECOLINE GBB 800	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 55 56 65 59 59 69 70 46 32 32	MIL 77000 MIL 78000 MIL 81000 MIL 81000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLF/ZXSF NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSBV NORI 40 ZXLB/ZXSF NORI 40 ZXLB/ZXSF NORI 40 ZYLB/ZYSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 72 66 64 65 67	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO DANAÏS TO DANAÏS CRYO DANAÏS WITH DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300 ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 500 ECOLINE FYC 150-600 ECOLINE FYF 800 ECOLINE GE1/GE2/GE3 ECOLINE GE4 ECOLINE GBB 150-600 ECOLINE GBB 800	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 55 56 65 59 59 69 70 46 32 32	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLF/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZYLB/ZYSB NORI 40 ZYLB/ZYSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1 PROFIN VT2L PROFIN VT3	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 72 66 64 65 67	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 150 ECOLINE DC 500 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE GE4 ECOLINE GBB 150-600 ECOLINE GBB 150-600 ECOLINE GLB 800 ECOLINE GLB 800 ECOLINE GLB 800 ECOLINE GLB 800 ECOLINE GLC 150-600	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 55 56 65 59 69 70 46 32 32 34	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXLBZXSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1 PROFIN VT2L PROFIN VT3 PROFIN-SI3IT	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 72 66 64 65 67 66	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS 6RYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 150 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE GE1/GE2/GE3 ECOLINE GE4 ECOLINE GIBO 150-600 ECOLINE GLB 150-600 ECOLINE GLB 150-600 ECOLINE GLB 800 ECOLINE GLB 150-600	42 42 71 50 50 61 62 62 61 64 73 62 66 64 55 55 56 65 59 69 70 46 32 32 34 34	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 FSL/FSS NORI 40 ZXLF/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZXLB/ZXSB NORI 40 ZYLB/ZYSB NORI 40 ZYLB/ZYSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1 PROFIN VT2L PROFIN VT3	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 72 66 64 65 67	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36
CONDA-VLC CONDA-VRC CONDA-VRC CONDA-VSM CR/CM CYL SK CYL SK CYL SL DANAÏS 150 DANAÏS CRYO DANAÏS CRYO DANAÏS CRYO AIR DANAÏS MTII DUALIS DYNACTAIR EVO ECO HP 300 ECO HP 300T ECOLINE BLC 1000 ECOLINE BLT 150-300 ECOLINE CTGM NG ECOLINE DC 125 ECOLINE DC 150 ECOLINE DC 150 ECOLINE DC 500 ECOLINE FYC 150-600 ECOLINE FYC 150-600 ECOLINE GE4 ECOLINE GBB 150-600 ECOLINE GBB 150-600 ECOLINE GLB 800 ECOLINE GLB 800 ECOLINE GLB 800 ECOLINE GLB 800 ECOLINE GLC 150-600	42 42 71 50 50 61 62 62 61 64 73 62 62 66 64 55 55 55 56 65 59 69 70 46 32 32 34	MIL 77000 MIL 78000 MIL 81000 MIL 90000 MIL 91000 MIL 91000 MP-CI/MP-II MS MultiTurn SA+GS / SAR+GS NORI 160 RXL/RXS NORI 160 ZXL/ZXS NORI 160 ZXLF/ZXSF NORI 320 ZXSV NORI 40 FSL/FSS NORI 40 RXL/RXS NORI 40 RXL/RXS NORI 40 ZXLBZXSB NORI 500 ZXSV OM PROFIN SI3 PROFIN VT1 PROFIN VT2L PROFIN VT3 PROFIN-SI3IT	39 39 39 40 40 64 71 72 52 33 33 58 51 32 31 31 33 33 72 66 64 65 67 66	Válvulas de globo NUCA Válvulas de retención NUCA ZJSVA/ZXSVA ZJSVM/RJSVM ZRN ZRS ZTN ZTS ZXNB ZXNB ZXNB	36 53 44 69 57 55 48 46 36 36

Nuestro lema:

Calidad hasta en el más mínimo detalle

La satisfacción del cliente, la seguridad y la fiabilidad son las máximas prioridades de KSB en materia de control de calidad. Las bombas y válvulas de KSB cumplen no solo las normas de calidad reconocidas a nivel internacional, sino también las estrictas normas internas que nos imponemos.

Nuestra gestión integrada de calidad evalúa centros de producción y proveedores de todo el mundo como parte de un proceso complejo.

De ahí que, como cliente de KSB, pueda tener la confianza de que siempre se beneficiará de una alta calidad constante con independencia de dónde y cuándo haga sus pedidos. El resultado de nuestro proceso de mejora continua son bombas y válvulas con una larga vida útil, una gran eficiencia y un desgaste reducido. Así lo garantiza nuestra certificación interna con el sello de calidad «Made by KSB».

Cómo vive KSB la calidad en el día a día

- Calidad es cuando los clientes están satisfechos: el cliente es siempre la razón principal de todos nuestros esfuerzos.
 Nuestro análisis global de satisfacción del cliente nos indica en qué situación nos encontramos a este respecto.
- La calidad es la contribución de cada empleado: en KSB, cada persona contribuye a que el cliente tenga una buena experiencia. Para lograr los mejores resultados, todos los empleados reciben formación continua.
- La calidad es el engranaje de procesos: revisamos y mejoramos continuamente las operaciones y el entorno laboral.
- La calidad es la aportación de nuestra cadena de suministro: fijamos nuestros objetivos de calidad junto con nuestros socios comerciales, de modo que la cadena de suministro al completo alcance su máximo nivel.
- La calidad es la forma de responder a los errores: cuando detectamos variaciones de calidad, averiguamos las causas para después eliminarlas eficazmente.

Como firmante del Pacto Global de las Naciones Unidas, KSB se compromete a ratificar los diez principios de la comunidad internacional en aspectos de derechos humanos, normas laborales, protección del medio ambiente y contra la corrupción.

Actuando responsablemente – para producir de forma sostenible

Protegemos el medio ambiente con productos de alta eficiencia producidos de forma eficiente mediante el uso racional de los recursos, a la vez que ayudamos a nuestros clientes a reducir sus emisiones de CO₂.

Introducción 5

Nuestros procesos de fabricación de bombas y válvulas persiguen minimizar nuestro impacto en el medioambiente y reducir al máximo el consumo de energía y las emisiones de dióxido de carbono. Al mismo tiempo, los productos de KSB contribuyen de forma directa a proteger el medioambiente, por ejemplo, ahorrando energía.

La sostenibilidad presenta una doble vertiente. Por un lado, la protección del medio ambiente ya durante la fabricación, y por otro, la huella ecológica que dejan nuestros productos y servicios a lo largo de su ciclo de vida. En KSB concedemos una enorme importancia a ambas cosas.

Para aliviar la carga sobre el medioambiente durante la producción, reducimos al mínimo el consumo de energía y materiales. Cuando desarrollamos nuevos productos y servicios tenemos en cuenta los aspectos ecológicos desde el primer momento, y nos guiamos por las normas internacionales respecto a la medición y mejora continua de nuestro desempeño medioambiental. Nuestros principios de sostenibilidad son de obligado cumplimiento para todas los centros y empresas del Grupo. Todas las plantas de KSB cuentan con la certificación según la norma ambiental ISO 14001.

Nuestras bombas y válvulas se fabrican cada vez más con materiales reciclables de forma respetuosa con el medio ambiente.

Durante el funcionamiento, nuestros productos energéticamente eficientes ayudan a ahorrar grandes cantidades de electricidad, evitando así la generación de gases de efecto invernadero. De ahí que resulten atractivos para nuestros clientes tanto desde el punto de vista ecológico como económico, sobre todo porque hoy en día el uso de bombas sigue representando alrededor del 30 % del consumo de electricidad en el sector industrial.

Además, existe un gran potencial de ahorro si se combinan bombas y válvulas con componentes digitales. He aquí un ejemplo: las bombas de agua de velocidad variable son muy eficientes en consumo energético y reducen la generación anual de CO₂ en 850 000 toneladas solo en Europa.

Como empresa integral que actúa de forma sostenible, utilizamos nuestra ingeniería para desarrollar productos con un alto nivel de eficiencia energética y fiabilidad. Los escasos tiempos de parada y el bajo consumo de energía son los principales factores para un funcionamiento económico, y los mejores argumentos a favor de nuestras bombas y válvulas. Conciliar los objetivos económicos y ecológicos es, pues, una realidad en KSB.

El universo de las marcas de válvulas KSB

Además de la marca paraguas «KSB», el grupo empresarial ofrece válvulas de las siguientes marcas:

omri

Válvulas de mariposa

La marca AMRI es empleada en edificación, industria, ingeniería hidráulica y centrales eléctricas. Los productos AMRI engloban actuadores neumáticos, hidráulicos y eléctricos, así como dispositivos de control y regulación.

SISIO

Válvulas de membrana

La marca SISTO asume funciones shut-off en edificación, industria, ingeniería hidráulica y en centrales eléctricas. Para la ingeniería de procesos estériles, incluida la biotecnología, KSB ofrece válvulas especiales bajo esta marca.

Válvulas de control

La marca MIL es utilizada en aplicaciones de ingeniería en centrales nucleares y convencionales, en refinerías y en el sector petroquímico y químico. Los productos MIL incluyen actuadores neumáticos y dispositivos de control y regulación.

7

Indicaciones generales

Productos regionales No todos los productos descritos están disponibles para todos los países. Los productos dirigidos solo a nivel regional están identificados debidamente. Para más información, consulte a su contacto KSB. Leyenda para actuadores En la sección de productos, el símbolo I junto con una letra indica los tipos de actuadores disponibles. m = manual (palanca, volante...) e = actuador eléctrico n = actuador neumático h = actuador hidráulico Todas las marcas o logotipos mostrados en este catálogo están protegidos por Derechos de marca los derechos de marca, propiedad de KSB SE & Co. KGaA y/o por una compañía del Grupo KSB. La ausencia del símbolo "®" no se debe interpretar como marca no registrada. Información de producto Información según el Reglamento Europeo (CE) N.º 1907/2006 relativo a las sustancias químicas (REACH); véase https://www.ksb.com/en-global/company/ corporate-responsibility/reach. Catálogo digital de productos https://www.ksb.com/es-es/global-search **Portal CAD** http://ksb.partcommunity.com **BIM** https://www.ksb.com/es-es/herramientas-y-know-how-de-ksb/herramientas-dediseno

Válvulas

Tipo/Aplicación	Serie	Página	Automatización	Transporte y tratamiento de aguas	Industria	Transformación de energía	Edificación	Transporte de sólidos	Industria farmacéutica/ alimentaria
	BOA-SuperCompact	30							
Válvulas de globo con asiento elástico conforme a DIN/	BOA-Compact	30							
EN	BOA-Compact EKB	30							
	BOA-W	30							
	воа-н	31							
	BOA-H/HE/HV/HEV	31							
Without and a state of the stat	NORI 40 ZXLBV/ZXSBV	31							
Válvulas de globo con fuelle conforme a DIN/EN	NORI 40 ZXLB/ZXSB	31							
	NORI 40 ZYLB/ZYSB	31							
	BOACHEM-ZXAB/ZYAB	32							
	ECOLINE GLB 150-600	32							
Válvulas de globo con fuelle conforme a ANSI/ASME	ECOLINE GLB 800	32							
	NORI 40 ZXL/ZXS	32							
	NORI 40 ZXLF/ZXSF	33							
	NORI 160 ZXL/ZXS	33							
Válvulas de globo con prensaestopas conforme a DIN/	NORI 160 ZXLF/ZXSF	33							
EN	NORI 320 ZXSV	33							
	NORI 500 ZXSV	33							
	BOACHEM-ZXA	34					_		
	ECOLINE VA16	34							
	ECOLINE GLC 150-600	34	_						
	ECOLINE GLF 150-600	34							
	ECOLINE GLF 800	35							
Válvulas de globo con prensaestopas conforme a ANSI/	ECOLINE GLV 150-300	35							
ASME	SICCA 150-600 GLC	35			-				
	SICCA 900-2500 GLC	35							
	SICCA 150-4500 GLF	35							
	Válvulas de globo NUCA	36	-						
	ZXNB	36							
Válvulas de globo para aplicaciones nucleares	ZXNVB	36	-			-			
	ZYNB/ZYN	36	-						
	BOA-CVE C/CS/W/IMS/EKB/IMS EKB	37	-						
Válvulas de control conforme a DIN/EN	BOA-CVE H	37	-		-		-		
valvalas de control comornie a bilivieli	BOA-CVP H	37	-		-				
	MIL 10000	37	-		-	_	_		
	MIL 21000	38	-		-		_		
	MIL 27000	38	-		-		-		
	MIL 29000	38	-		-				
	MIL 41000	38	-		-				-
	MIL 50000	38	-		-				_
Válvulas de control conforme a ANSI/ASME	MIL 70000	39	-		-				
valvulas de control comornie à ANSI/ASIVIE									
	MIL 71000 MIL 76000	39 39			-				
			-		-	-			
	MIL 77000	39	-		-				
	MIL 78000	39							
	MIL 81000	40	-			-			
Without and an administration of the state o	MIL 91000	40				-			
Válvulas de recirculación automática	MIL 90000	40				_			
	BOA-Control/BOA-Control IMS	41							
Válvulas de globo y de equilibrado hidráulico conforme	BOA-Control PIC	41							
a DIN/EN	BOA-Control SBV	41							
	BOA-Control DPR	41							

Tipo/Aplicación	Serie	Página	Automatización	Transporte y tratamiento de aguas	Industria	Transformación de energía	Edificación	Transporte de sólidos	Industria farmacéutica/ alimentaria
Válvulas reguladoras de nivel conforme a DIN/EN	CONDA-VLC	42							
Válvulas reductoras de presión conforme a DIN/EN	CONDA-VRC	42							
Válvulas de mantenimiento de presión conforme a DIN/ EN	CONDA-VSM	42		•					
	BOAVENT-AVF	43		-					
Válvulas de purga y llenado conforme a DIN/EN	BOAVENT-SIF	43							
valvulas de purga y neriado comornie a Dilvicio	BOAVENT-SVA	43							
	OAVENT-SVF	43							
Válvulas de purga para aplicaciones nucleares	SISTO-VentNA	44				-			
- Valvalus de purgu para apricaciones macieures	SISTO-KRVNA	44							
Válvulas reguladoras de arranque y parada conforme a ${\sf DIN/EN}$	ZJSVA/ZXSVA	44	•		•	•			
	COBRA-SGP/SGO	44							
	COBRA-SMP	45							
	ECOLINE SP	45		-					
Válvulas de compuerta conforme a DIN/EN	ECOLINE GT 40	45							
valvulas de compuerta comornie a biliveix	STAAL 40 AKD/AKDS	45							
	STAAL 100 AKD/AKDS	46							
	AKG-A/AKGS-A	46							
	ZTS	46							
	ECOLINE GIBO 150-600	46							
	ECOLINE GTB 800	46							
	ECOLINE GTC 150-600	47							
	ECOLINE GTF 150-600	47				_			
Válvulas de compuerta conforme a ANSI/ASME	ECOLINE GTF 800	47				_			
	ECOLINE GTV 150-300	47							
	SICCA 150-600 GTC	47							
	SICCA 900-3600 GTC	48							
	SICCA 150-2500 GTF	48							
Válvulas de compuerta para aplicaciones nucleares	ZTN	48				-			
Válvula de protección contra sobrepresión del cuerpo	UGS	48			_			_	
Válvulas de guillotina conforme a DIN/EN	HERA-BD	49		-	_			_	
Válvulas de quillotina conforme a ANSI/ASME	HERA-BDS HERA-BHT	49			+				
valvulas de guillotilla comornie a ANSI/ASIVIE	HERA-SH	49	-						
	BOA-RPL/RPL F-F	50						_	
	BOA-RFV	50		-					
	BOA-RVK	51					-		
	BOA-R	51							
Válvulas de retención conforme a DIN/EN	NORI 40 RXL/RXS	51							
	NORI 160 RXL/RXS	52							
	RGS	52							
	BOACHEM-RXA	52							
	ECOLINE PTF 150-600	52							
Válvulas de retención conforme a ANSI/ASME	ECOLINE PTF 800	52							
	SICCA 150-4500 PCF	53							
	Válvulas de retención NUCA	53							
Válvulas de retención para aplicaciones nucleares	RJN	53							
	RYN	53							

Tipo/Aplicación	Serie	Página	Automatización	Transporte y tratamiento de aguas	Industria	Transformación de energía	Edificación	Transporte de sólidos	Industria farmacéutica/ alimentaria
	ECOLINE WT/WTI	54							
	STAAL 40 AKK/AKKS	54							
	STAAL 100 AKK/AKKS	54							
Válvulas de retención de clapeta conforme a DIN/EN	AKR/AKRS	54							
	ZRS	55							
	SISTO-RSK/RSKS	55							
	SERIE 2000	55							
	ECOLINE SCC 150-600	56							
	ECOLINE SCF 150-600	56							
N/4h udaa da matawai (m. da alamata asanfamaa a ANGUAGNAF	ECOLINE SCF 800	56							
Válvulas de retención de clapeta conforme a ANSI/ASME	ECOLINE SCV 150-300	56							
	SICCA 150-600 SCC	57				-			
	SICCA 900-3600 SCC	57							
Válvulas de retención de clapeta para aplicaciones	SISTO-RSKNA	57							
nucleares	ZRN	57				-			
Válvulas de retención de clapeta oscilante conforme a DIN/EN	COBRA-TDC01/03	58		•	-	•			
	BOA-S	58							
Filtros conforme a DIN/EN	NORI 40 FSL/FSS	58							
	BOACHEM-FSA	58							
	ECOLINE FYC 150-600	59				-			
Filtros conforme a ANSI/ASME	ECOLINE FYF 800	59							
	BOAX-CBV13	59							
	BOAX-S/SF	60							
	BOAX-B	60							
Válvulas de mariposa de eje centrado	ISORIA 10/16	60							
	ISORIA 20/25	60					$\overline{}$		
	MAMMOUTH	60							
	KE	61		_					
	APORIS-DEB02	61				_			
	DANAÏS 150	61	_	_					
Válvulas de mariposa de doble excentricidad	DANAÏS MTII	61	-						
valvulas de manposa de doble excentricidad	DANAÏS CRYO	62				-		_	
	DANAÏS CRYO AIR	62				_			
	TRIODIS 150								
MALINILAR do magrin and de trinla assentatividad		63	_						
Válvulas de mariposa de triple excentricidad	TRIODIS 300	63			_	-			
	TRIODIS 600	63				-			
Válvulas de mariposa para aplicaciones nucleares	CLOSSIA	63				_			
Válvulas combinadas de mariposa y retención	DUALIS	64							
Válvulas de bola de una pieza	MP-CI/MP-II	64							
·	PROFIN VT1	64							
Válvulas de bola de dos piezas	ECOLINE BLT 150-300	64				_			
	PROFIN VT2L	65							
	ECOLINE BLC 1000	66				_			
Válvulas de bola de tres piezas	PROFIN SI3	66		•					
	PROFIN VT3	67							
	SISTO-KB	67				-			
	SISTO-16	67							
WILL I I I I I I I I I I I I I I I I I I	SISTO-16S	68							
Válvulas de membrana con asiento elástico conforme a DIN/EN	SISTO-16RGAMaXX	68							
	SISTO-16TWA	68							
	SISTO-20	68							
	SISTO-C	68							

Tipo/Aplicación	Serie	Página	Automatización	Transporte y tratamiento de aguas	Industria	Transformación de energía	Edificación	Transporte de sólidos	Industria farmacéutica/ alimentaria
Wéliudes de manderen e nors enlisseienes nucleores	SISTO-20NA	69							
Válvulas de membrana para aplicaciones nucleares	SISTO-DrainNA	69							
Sistema de cierre de urgencia y de by-pass	ZJSVM/RJSVM	69							
luntar da avnanción	ECOLINE GE1/GE2/GE3	69							
Juntas de expansión	ECOLINE GE4	70							

Válvulas productos regionales Chile

Tipo/aplicación	Serie	Página	Automatización	Transporte y tratamiento de aguas	Industria	Transformación de Energía	Edificaciones	Transporte de sólidos	Alimentación/ Farmacéutica
Válvulas de globo con prensaestopas conforme a DIN/EN	ECOLINE VA40	34			-	•			
Válvulas reductoras de presión conforme a DIN/EN	ECOLINE XLC	42							
Válvulas de purga y llenado conforme a DIN/EN	LYNX 3 F - RFP	43							
Válvulas de compuerta conforme a DIN/EN	ECOLINE GTR16p/GTR16o	45							
Válvulas de guillotina conforme a ANSI/ASME	CYL SK	50							
valvulas de guillotilla comornie a Alvsi/Asivic	CYL SL	50							
	SR 20.40	50							
Válvulas de retención conforme a DIN/EN	ECOLINE RA16	51							
	ECOLINE RA40	51							
Válvulas de retención de mariposa conforme a DIN/EN	ECOLINE CTGM NG	54							
	ECOLINE DC 125	55							
Válvulas de retención de plato conforme a ANSI/ASME	ECOLINE DC 150	55							
	ECOLINE DC 300	56							
Filtros conforme a DIN/EN	Filtro Y PN 16	59							
Válvulas de mariposa de doble excentricidad	Eco HP 300	62							
valvulas de mariposa de doble excentricidad	Eco HP 300T	62							
	PROFIN-VT2F	65							
	PROFIN-VT2F TF	65							
Válvulas de bola de dos piezas	PROFIN-VT2H	65							
	ECOLINE EST 150-600	65							
	IVC-EST, -VET	66							
With unless de belle de tras mierros	PROFIN-SI3IT	66							
Válvulas de bola de tres piezas	PROFIN-VT3 Gas	67							

Actuadores

Tipo/Aplicación	Serie	Página	Transporte y tratamiento de aguas	Industria	Transformación de energía	Edificación	Transporte de sólidos	Industria farmacéutica/ alimentaria
Palanca manual	CR/CM	71						
raianca manuai	S/SR/SP	71						
Enguanaia vadustav	MS	71						
Engranaje reductor	MC	71						
	MultiTurn SA+GS / SAR+GS	72						
Actuadores eléctricos	QuarterTurn AQ, AQL / SQ	72						
	SISTO-LAE	72						
Actuadores hidráulicos	HQ EVO	73						
	ACTAIR EVO	73						
	DYNACTAIR EVO	73						
	SISTO-LAD	74						
Actuadores neumáticos	SISTO-LAP	74						
	SISTO-C LAP	74						
	MIL 37-38	74						
	MIL 67-68	74						
Accesorios de control	EMO	75						

KSB ofrece una gran variedad de actuadores. Solo tiene que ponerse en contacto con nuestros especialistas.

Actuadores productos regionales Chile

Tipo/aplicación	Serie	Página	Transporte y tratamiento de aguas	Industria	Transformación de Energía	Edificaciones	Transporte de sólidos	Alimentación/ Farmacéutica
Accionadores eléctricos	OM (Sun Yeh)	72						
Accionadores eléctricos	T (Sun Yeh)	72						

Automatización

Tipo/Aplicación	Serie	Página	Transporte y tratamiento de aguas	Industria	Transformación de energía	Edificación	Transporte de sólidos	Industria farmacéutica/ alimentaria
	AMTROBOX	76						
	AMTROBOX Ex ia	76						
Monitorización	AMTROBOX ATEX Zona 22	76						
Monitorización	AMTROBOX M	76						
	AMTROBOX R	77						
	AMTROBOX R Ex ia	77						
Control do anautora/ciarra	AMTRONIC U	77						
Control de apertura/cierre	AMTRONIC U Ex ia	78						
Posicionador	SMARTRONIC U MA	78						
POSICIONAUOI	SMARTRONIC U AS-i	78						
Posicionador inteligente	SMARTRONIC U PC	79						

Vista general de la gama

Automation productos regionales Chile

Tipo/aplicación	Serie	Página	Transporte y tratamiento de aguas	Industria	Transformación de Energía	Edificaciones	Transporte de sólidos	Alimentación/ Farmacéutica
Monitorización	ALS 200	76						
Control apertura/cierre	ALP 1000	77						
Posicionador	ALP 2000	78						

	BOA-SuperCompact	BOA-Compact	BOA-Compact EKB	BOA-W		ВОА-Н	BOA-H/HE/HV/HEV	NORI 40 ZXLBV/ZXSBV	NORI 40 ZXLB/ZXSB	NORI 40 ZYLB/ZYSB	BOACHEM-ZXAB/ZYAB		ECOLINE GLB 150-600	ECOLINE GLB 800		NORI 40 ZXL/ZXS	NORI 40 ZXLF/ZXSF	NORI 160 ZXL/ZXS	NORI 160 ZXLF/ZXSF	NORI 320 ZXSV	NORI 500 ZXSV	BOACHEM-ZXA	ECOLINE VA16		SICCA 150-600 GLC	SICCA 900-2500 GLC	SICCA 150-4500 GLF	ECOLINE GLC 150-600	ECOLINE GLF 150-600	ECOLINE GLF 800	ECOLINE GLV 150-300				
Fluidos abrasivos	asiento elástico conforme a DIN/EN	+	-		DIN/EN		_		_	_		conforme a ANSI/ASME	L	_	DINVEN				\dashv	_			-	Válvulas de globo con prensaestopas conforme a ANSI/ASME				_	_		-	\vdash	Ш		<u> </u>
Aguas residuales con materias fecales Aguas residuales sin materias fecales		+	+		M			_	\dashv	_		\AS	_	_	N D			\dashv	\dashv					I/AS				-	-			⊬	Н	\vdash	\vdash
Fluidos agresivos	ص س	+	+	\vdash	e e	-		_	\dashv	-		NS			Ф	-		\dashv	\dashv	-			-	NS					┢			\vdash	\vdash	\vdash	\vdash
Fluidos inorgánicos	Ē-	+	+	\vdash	conforme	\dashv		_	\dashv		-	a /	-	-	prensaestopas conforme	-		\dashv	\dashv	\dashv		_	\dashv	a /					\vdash			\vdash	\vdash	\vdash	\vdash
Lodos activados	ᆔ	+	+		nfc		\dashv	_	\dashv	-		rme	_	_	nfc	_		\dashv	\dashv	-				rme					\vdash		╁	\vdash	Н	\vdash	\vdash
Agua salobre			+						\dashv			nfo			S CC	-		\dashv	\dashv					nfo						\vdash		\vdash	Н	М	\vdash
Agua de servicio	stic	+		Н	le l			_	\exists			8			opa			\dashv	\dashv					8								\vdash	Н		\vdash
Vapor	e		\top		n f						П	elle			est	П								pas								\vdash	П	М	$\overline{}$
Destilados	월				globo con fuelle							globo con fuelle			sus									estc									П		Г
Fluidos explosivos	siel				qol							0			pre									nsa									П		Г
Lodos digeridos	lo lo				e g							ogo			CO									pre											
Fluidos con partículas sólidas	Válvulas de globo con				Válvulas de							g			oq									no											
Mezclas (fluidos con minerales, arena,	흲				Vul							Válvulas de) G									8											
gravilla, ceniza)	- g	+	+	Н	Vá							vula	H	_	s de			_					-	glo				-			-	⊬	Н		\vdash
Fluidos inflamables Agua de ríos, agua de lagos y aguas	as	+	+	\vdash							Ц	Váj	H		Válvulas de globo								-	ge				-		-		⊬	Н	\vdash	\vdash
Agua de rios, agua de lagos y aguas subterráneas	<u> </u>														/álv									ılas											
Gas licuado	> -		\top	Н					\neg					_				\dashv	\dashv					álvu					Т			\vdash	Н	М	\vdash
Fluidos con gas			\top								П					П								>								\vdash	П	М	$\overline{}$
Gases		\top	\top	П				П		П	固					面																\vdash	П		\Box
Fluidos nocivos para la salud																																П	П		Г
Fluidos tóxicos																																			
Agua caliente			\perp	Ш							Ш														-							L	Ш		<u> </u>
Agua de calefacción			4	Ш				_	_	_			_	_				_	4									L	_			╄	Ш		<u> </u>
Fluidos muy agresivos		+	\perp	Ш				_	_	_	빌		┇	┇				_	4	_					_		_	<u> </u>	<u> </u>	_	-	╄	Ш	<u> </u>	<u> </u>
Condensados	_	+	+	Н							믝							-	\dashv	-	_					_	_	╚		-	-	╄	Н	<u> </u>	<u> </u>
Fluidos corrosivos		+	+	Н				_			님		Ŀ	_				-	\dashv	_	\dashv		-					-	-		-	⊬	Н	H	\vdash
Fluidos valiosos Combustibles	-	+	+	Н									▝					\dashv	\dashv		\dashv		-					-	-		-	⊬	Н	\vdash	\vdash
Agua de refrigeración			-	\vdash				_	\dashv	-	-		\vdash					\dashv	\dashv	-				ł	-					\vdash		\vdash	\vdash	Н	\vdash
Fluidos volátiles	-	+	-	Н						П	Н		П					\dashv	\dashv				-1	ł							\vdash	\vdash	Н	H	\vdash
Agua contra incendios		+	+	\vdash		_	_	-	-	-	-		F	-				\dashv	\dashv				\dashv								\vdash	+	\vdash	H	\vdash
Disolventes		1		\Box					\dashv									\dashv	\dashv						_		F					\vdash	Н	М	\vdash
Agua de mar		\top	\top	Н					\neg									\dashv	\dashv				\neg									\vdash	Н	М	\vdash
Fluidos con aceite mineral			\top								固					固																\top	П		Г
Aceites			Ĺ								靣																								
Fluidos orgánicos		\Box																																	
Fluidos que polimerizan/cristalizan		L]																			L					Ш		
Fluidos radioactivos			\perp	Ш														_	_									L				L	Ш	\square	\sqsubseteq
Detergentes		\perp	-	Ш					_		Щ		_	_					_	_	_	Щ	_		_			L	_	_	_	\vdash	Ш		<u> </u>
Lodos sin tratar		+	\vdash	\vdash					_	_			_	_		\square		_	4	_	_		ᆜ		_		_	L	_		-	\vdash	Щ		<u> </u>
Lubricantes		+	+	\vdash					\dashv	_	-		_	_		\vdash		_	-		_	\square					-	_	_	-	-	\vdash	\vdash		<u> </u>
Aguas sucias Salmuera		+	+	\vdash					\dashv	-	\vdash		-	_		\vdash		-	\dashv	-	٨	Н	\dashv				_	-	-	\vdash	+	\vdash	\vdash	H	\vdash
Agua de alimentación		+	+	\vdash																		Н	\dashv									\vdash	\vdash	\vdash	-
Pintura por inmersión		+	+	\vdash		-	-	_					-	_				-		-			\dashv			_				-		+	\vdash	Н	\vdash
Agua potable		+		\vdash					\dashv				\vdash	_		\vdash	\dashv	\dashv	\dashv		\exists	Н	\dashv					\vdash	\vdash			+	\forall	Н	\vdash
Vacío		†	+-	\vdash							\exists			\vdash		\vdash		\dashv	\dashv	\dashv	\exists	H	\dashv				Т	\vdash	T	T	T	+	\vdash	Н	
		-	+	-		\rightarrow	_	_		_				_		-	\vdash	-	\rightarrow	-	-	\vdash	-			_		\vdash		1	+	1	\Box	М	$\overline{}$
Aceite térmico											П												- 1										1	1 1	

		Válvulas de globo NUCA	ZYNB/ZYN	ZXNB	ZXNVB		BOA-CVE C/CS/W/IMS/EKB/IMS EKB	ВОА-СVЕ Н	BOA-CVP H		BOA-Control /BOA-Control IMS	BOA-Control PIC	BOA-Control SBV	BOA-Control DPR		CONDA-VLC		CONDA-VRC		CONDA-VSM		BOAVENT-AVF	OAVENT-SVF	BOAVENT-SIF	BOAVENT-SVA		SISTO-VentNA	SISTO-KRVNA		ZJSVA/ZXSVA						
Fluidos abrasivos	res				4	N.				EN					EN	L	H		Na.		용					res	L		H	L	\perp	\perp	\perp	$oxed{oxed}$	\perp	
Aguas residuales con materias fecales	lea				_	DIN/EN				DIN/EN		_			DIN/EN		DIN/EN		DIN/EN		ena			_	_	lea			DIN/EN	L	\perp	\perp	\perp	\vdash	_	_
Aguas residuales sin materias fecales	nu				_	Ф				Ф		_			Ф		Ø		Ø		× ×			_	_	unu	_		σ		\perp	\perp	\perp	\vdash	_	_
Fluidos agresivos	aplicaciones nucleares	_			_	conforme				conforme		_	_		conforme		conforme		me		purga y llenado			_	_	Sec	_		me	L	\perp	\perp	\perp	\vdash	_	_
Fluidos inorgánicos	cior	_			_	for				for				_	ıfor	_	for	_	for		bul			_	_	cior	_	_	Į	L	\perp	\perp	\perp	\vdash	\vdash	<u> </u>
Lodos activados	lica	_		\vdash	4	9				9	_	_	-	-	9	_	9	_	9		g			_	_	lica	<u> </u>		ខ	L	╄	+	+	╄	\vdash	<u> </u>
Agua salobre		<u> </u>		\vdash	4	<u>o</u>	_	_	_	001	<u> </u>	_	<u> </u>	<u> </u>	nivel	_	presión	_	ión		Válvulas de	_		<u> </u>	<u> </u>	ap	<u> </u>	L	ada	H	╀	+	+	\vdash	\vdash	_
Agua de servicio	para	L		<u>.</u>	_	ont		_	_	ául			-	-	e ni	_	res	_	res		áΙνι	_		<u> </u>	<u> </u>	ara	_		Jara	L	\vdash	+	+	\vdash	\vdash	_
Vapor	d o	-			4	Válvulas de control				equilibrado hidráulico	_	_		-	as de	_	de p	_	de presión conforme		>		\vdash		<u> </u>	Válvulas de purga para aplicaciones nucleares	_		arranque y parada conforme		\vdash	+	+	\vdash	\vdash	_
Destilados	Válvulas de globo			\vdash	4	as c				유	_	-	-	-	Válvulas reguladoras	_	as c		to					_	_	urg	<u> </u>		due	<u> </u>	╀	+	+	⊬	\vdash	<u> </u>
Fluidos explosivos	de g	<u> </u>			-	<u> </u>	-			bra	<u> </u>		⊬	⊬	ılad	_	Válvulas reductoras	_	de mantenimiento			_		<u> </u>	<u> </u>	de p	<u> </u>		ra		╀	+	+	\vdash	\vdash	_
Lodos digeridos Fluidos con partículas sólidas	as c				-	Vá				iii			-	\vdash	ıgə.		onp		in							as c	-		ar	\vdash	╀	+	+	\vdash	\vdash	_
Mezclas (fluidos con minerales, arena,	N	_			\dashv					ed :	H		┢	\vdash	as r	<u> </u>	s re	_	ıteı						_	N.	_		s de	\vdash	╁	+	+	\vdash	\vdash	\vdash
gravilla, ceniza)	Vá									op /					Nu		'ula		mai							Vá			ora							
Fluidos inflamables					7			П		Válvulas de globo y de					Vá		/á/		de										Válvulas reguladoras de		+	+	+	\vdash	T	
Agua de ríos, agua de lagos y aguas								_	_	g			\vdash	\vdash		\vdash			Válvulas										ed	,	+	+	+	\vdash	\vdash	
subterráneas										de									álvu										as r							
Gas licuado										llas									Š										<u>N</u>							
Fluidos con gas										álvu																			Vá							
Gases										Š																										
Fluidos nocivos para la salud																															\perp	\perp	\perp			
Fluidos tóxicos					╝																									L	Ļ	Ļ	\perp	L	L	
Agua caliente					╝																								-		Ļ	Ļ	\perp	L	L	
Agua de calefacción					_																									L	\perp	\perp	\perp	$oxed{igspace}$	L	
Fluidos muy agresivos					_								_	_		_											_			L	\perp	\perp	\perp	\perp	\perp	_
Condensados					_								_	_		_											_			L	\perp	\perp	\perp	\perp	\perp	_
Fluidos corrosivos					_											_											_			L	\perp	\perp	\perp	\perp	\perp	_
Fluidos valiosos					_											_											_			L	╄	\perp	\perp	\perp	\perp	_
Combustibles		_			_											_											_			L	╄	\perp	\perp	\vdash	\vdash	<u> </u>
Agua de refrigeración					4							Ш	ш														_			_	╄	\perp	\perp	\vdash	<u> </u>	<u> </u>
Fluidos volátiles					_								-														_			_	╄	\perp	\perp	\vdash	<u> </u>	<u> </u>
Agua contra incendios				$\vdash \vdash$	_		_				_	_	-	-		_							H							L	\vdash	+	+	\vdash	\vdash	<u> </u>
Disolventes		_	_	\vdash	4		_				_	_	\vdash	-		<u> </u>		_					\vdash				_			\vdash	\vdash	+	+	\vdash	\vdash	_
Agua de mar				\vdash	4			_	_			-	-														_			_	╀	+	+	\vdash	\vdash	<u> </u>
Fluidos con aceite mineral				\vdash	4							-	-																	_	╀	+	+	\vdash	\vdash	<u> </u>
Aceites		_		\vdash	4		_		_		L	-	⊬	₩		<u> </u>		_					H	H	_		_			\vdash	⊬	+	+	⊬	⊬	-
Fluidos gua polimeria poleristalizan		\vdash	_	\vdash	-		-	_	_		_	_	\vdash	\vdash		<u> </u>		_		_			H	\vdash	\vdash		_			\vdash	+	+	+	\vdash	\vdash	-
Fluidos que polimerizan/cristalizan Fluidos radioactivos							\dashv	_	_			\vdash	\vdash	\vdash		_		_					H	H	H		_	\vdash		\vdash	+	+	+	\vdash	\vdash	\vdash
Detergentes				-	-		\dashv	_	_			\vdash	\vdash	\vdash		_		_		_			\vdash				_			\vdash	+	+	+	\vdash	\vdash	\vdash
Lodos sin tratar			\vdash	\vdash	-		\dashv	-	_		\vdash	\vdash	\vdash	\vdash		<u> </u>		_		H			H	\vdash	\vdash		_	\vdash		\vdash	+	+	+	\vdash	\vdash	\vdash
Lubricantes		-	\vdash	\vdash	-		\dashv	\vdash	_		\vdash	\vdash	\vdash	\vdash		<u> </u>		_		H			H	\vdash	\vdash		_	\vdash		\vdash	+	+	+	\vdash	\vdash	\vdash
Aguas sucias				\vdash	\dashv			-	_			\vdash		\vdash						_							_				+	+	+	\vdash	\vdash	\vdash
Salmuera				\vdash	-1		\dashv	=			\vdash	\vdash	\vdash	\vdash		-		-		_		_	=	-	-			\vdash			+	+	+	+	\vdash	\vdash
Agua de alimentación			\vdash	\vdash	-1		\dashv				\vdash	\vdash	\vdash	+		-		_					H	\vdash	\vdash					Н	+	+	+	+	\vdash	\vdash
Pintura por inmersión				\vdash	\exists		\dashv	_			\vdash	\vdash	\vdash	\vdash						Н			Н	\vdash	\vdash					f	+	+	+	+	+	\vdash
Agua potable				\vdash	-1			Н					T																		+	+	+		\vdash	
Vacío				\vdash	\exists			Н			Ē					Ē		Ī				Ē	Ē	Ī	Ē						+	+	+	T	\vdash	\vdash
Aceite térmico				\sqcap	7			П					T										П					Ť			\top	\uparrow	\top			
Agua de lavado				\sqcap										T																	\top		\top			
											_		_			_																				

	COBRA-SGP/SGO	COBRA-SMP	ECOLINE SP	ECOLINE GT 40	STAAL 40 AKD/AKDS	STAAL 100 AKD/AKDS	AKG-A/AKGS-A	ZTS		ECOLINE GIBO 150-600	ECOLINE GTB 800	ECOLINE GTC 150-600	ECOLINE GTF 150-600	ECOLINE GTF 800	ECOLINE GTV 150-300	SICCA 150-600 GTC	SICCA 900-3600 GTC	SICCA 150-2500 GTF		NTZ		HERA-BD		HERA-BDS	HERA-BHT	HERA-SH		ngs		BOA-RPL/RPL F-F	BOA-RFV	BOA-RVK	BOA-R	NORI 40 RXL/RXS	NORI 160 RXL/RXS
Fluidos abrasivos	Z								ME										res		Ę.		ME				od.		ĘN			П	\Box		
Aguas residuales con materias fecales	Válvulas de compuerta conforme a DIWEN	H			\vdash				a ANSI/ASME										Válvulas de compuerta para aplicaciones nucleares	_	Válvulas de guillotina conforme a DIN/EN	H	Válvulas de guillotina conforme a ANSI/ASME		-	핌	protección contra sobrepresión del cuerpo	L	DIN/EN	Н	Н	$\vdash \vdash$	\dashv	\dashv	-
Aguas residuales sin materias fecales Fluidos agresivos	о 0	\vdash	Н		\vdash	\dashv	\dashv	_	NS				\vdash						nu	\dashv	е э	-	NS		H	믐	del	H	σ	\vdash	Н	\vdash	\dashv	\dashv	_
Fluidos agresivos	Ē-	\vdash			\vdash		\dashv		a A				\vdash						one	-	Ē.	\dashv	a /	-	-	_	ón	H	Válvulas de retención conforme	\vdash	Н	\vdash	\dashv	\dashv	_
Lodos activados		\vdash	Н		\vdash		\neg		conforme				\vdash						acic	\neg	onfo	П	rme	П	П	Ħ	resi	Н	onfo	\vdash	Н	\vdash	\dashv	\dashv	
Agua salobre	- a C	\vdash	П		H				nfo				\vdash						plic		a cc	\exists	nfo		_	_	rep	Г	u U		П	П	\top	\dashv	\vdash
Agua de servicio	■ lert				\Box						Г								ra a	П	otin		a C0		T	靣	sok	Г)ció	百	П	П		\neg	
Vapor	m								compuerta										ра г		Ē		ting				ıtra		eter						
Destilados	8								nbn										erta		de g		Hill				S		de n				\Box		
Fluidos explosivos	s de		Ш						co										ndı		as c		e gu				ión		as c		\square	Ш	_		
Lodos digeridos							_		Válvulas de										COM	_	<u> </u>		p se			፱	tecc	L	<u>N</u>		\square		\dashv		_
Fluidos con partículas sólidas	\ 	┡				\dashv			ulas		L	L	_						de	_	Vá		vula				pro.	L	Vá		\square	\square	\dashv	\dashv	_
Mezclas (fluidos con minerales, arena, gravilla, ceniza)									/álv										ılas				Vál												
Fluidos inflamables					\vdash	\dashv	\dashv												álvi	\dashv	-	\dashv					ılas	\vdash		\vdash	Н	\vdash			
Agua de ríos, agua de lagos y aguas					\Box														>		-	╛					Válvulas de	Н			Н	\Box	\exists	-	<u> </u>
subterráneas																											>								
Gas licuado																																			
Fluidos con gas			Ш											•					_			_									\square	Ш			
Gases	_	_	Ш																_			_							-	Ш	\sqcup		┛		▝
Fluidos nocivos para la salud		_	Ш				_			_	Ц		_		_		-		-			\dashv			_			L	-	Ш	Ш	\square	4		Ł
Fluidos tóxicos	-	 		_			_	_		_		_	_	_	_	_			l -			\dashv			_	\square		Ŀ	-	\vdash	\vdash		-		H
Agua caliente Agua de calefacción	-		H							_		-	H			H			-	_	-	\dashv			_			-		Н	H	H		-	F
Fluidos muy agresivos	-	-			\vdash		\dashv						-			-			-	\dashv	-	\dashv			_			-		H	H		-	\dashv	\vdash
Condensados		\vdash	Н		ы	\dashv	\dashv	_		ī	Ħ		\vdash		\vdash					\dashv	-	\dashv						Н		Н	Н	H			\vdash
Fluidos corrosivos				_	\exists		\dashv													\exists	-	\exists				П		Г		П	П	П	\exists	_	\vdash
Fluidos valiosos					\Box																-										П	П			
Combustibles																						\neg										П		\neg	
Agua de refrigeración																																			
Fluidos volátiles																																			
Agua contra incendios																			_		_	_									Ш	Ш	\perp		
Disolventes	_	┡											_						-	_								_	-	\square	\square		\dashv	\dashv	_
Agua de mar	_	-				\dashv	\dashv			_	L		-		_	_			-	_	-	\dashv						L	-	\vdash	Ш		_	=	_
Fluidos con aceite mineral Aceites		-					\dashv			-	-		\vdash						-	\dashv	-	\dashv			_			H	-	\vdash	Н				
Fluidos orgánicos	-									-			\vdash						-	-	-	\dashv						H		\vdash	Н	$\vdash \vdash$	-	-	-
Fluidos que polimerizan/cristalizan					\vdash	\dashv	\dashv												-	\dashv	-	\dashv						\vdash		\vdash	Н	\vdash	\dashv		
Fluidos radioactivos					H															П		\neg						Т			П	П	\top	\exists	F
Detergentes					П		\neg														-	\neg									П	П		\neg	
Lodos sin tratar		İ																								回						П		\exists	
Lubricantes																																			
Aguas sucias							_												_							旦		L		口	\square	Ш	\perp		
Salmuera		_	Ш	_			_	_		_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	Ļ				_						L		\sqcup	\sqcup		_	ᆜ	<u>_</u>
Agua de alimentación		\vdash	Н																	_		\dashv		_		\vdash		-		$\vdash \vdash$	Ш				╚
Pintura por inmersión Agua potable			\vdash		$\vdash \vdash$		\dashv				H	H	\vdash							-		\dashv			_	\vdash		_	-	Н	$\vdash\vdash$	$\vdash \vdash$	\dashv	\dashv	<u></u>
			Н		\vdash	\dashv	\dashv	_					\vdash						-	-		\dashv			_	\vdash		_			Н	\vdash	\dashv		-
\/acio																																			
Vacío Aceite térmico		\vdash	Н			\dashv	\dashv						\vdash						-	\dashv		\dashv				-		Н	-	\vdash	Н	$\vdash \vdash$		$\overline{}$	\vdash

									-																											
									Válvulas de retención NUCA																											
									ž																											
					8				ο'n					S	STAAL 100 AKK/AKKS						8	2		8												
					ECOLINE PTF 150-600		SICCA 150-4500 PCF		ĕ				_	STAAL 40 AKK/AKKS	¥						ECOLINE SCC 150-600	ECOLINE SCF 150-600	_	ECOLINE SCV 150-300	SICCA 150-600 SCC	SICCA 900-3600 SCC					m					
			⋖		20	ECOLINE PTF 800	0		ţ.				ECOLINE WT/WTI	<	$\stackrel{>}{\sim}$			S			22	20	ECOLINE SCF 800	20	S	0					COBRA-TDC01/03					
			BOACHEM-RXA		1	8	20		ē				≥	¥	¥			SISTO-RSK/RSKS			5	F 1	8	5	8	9		⋖			9					
			7		Ē	E	4		e				Ş	₹	0	S		5	0		ũ	Š	Ω	Š	9-	-3		SISTO-RSKNA			8					
			匵		ш	ш	2		S				ш	49	9	AKR/AKRS		S	SERIE 2000		ш	ш	ш	ш	3	ĕ		SS			Ę.					
			끙		Ę	Ξ	Ā		n a				Ę	7	7	₹		5	E 2		Ξ.	록.	Ξ.	록.	٨	δ,		5			Ϋ́					
		RGS	Ă		ō	ō	Ö		≥	S N	RYN		ō	₹	₹	8	ZRS	Ĭ	₹		ਰ	ਨੁ	ਠ	ਨੁ	S	Ö		Ĕ	ZRN		酉					
		2	B		ы	ы	Š		Š	\sim	2		ы	S	S	Ť	ZR	S	S		ы	Ш	Ш	Ш	Š	Š		S	ZR		$_{\rm c}$					
Fluidos abrasivos	-			111				S				-		Т						111							S			-		\neg	\neg	\top	\neg	_
	a DIN/EN	-	-	conforme a ANSI/ASME	_			nucleares	H	_		DIN/EN	_	-		-			-	conforme a ANSI/ASME		-		-	-	_	clapeta para aplicaciones nucleares	-	\vdash	a DIN/EN	-	\dashv	+	+	+	_
Aguas residuales con materias fecales	ΙĘ	_	_	AS	_		\Box	ee	_			ΙŽ	_			<u> </u>				AS		_			_		ee		Ш	Ξ.	_	\dashv	+	+	+	_
Aguas residuales sin materias fecales	аП			15				ž				аГ								ISI							ă			аП						
Fluidos agresivos	e			4				S												A							S			e						
Fluidos inorgánicos	Ĕ			Ø				one				Ĕ				\vdash		П		В							one.		П	Ĕ		\neg	\top	\top	\top	_
	rg-	-	\vdash	∃ ĕ	H		-	Ģ.	-			nfc	_	\vdash		-		-	-	me		\dashv		\dashv	\dashv	_	Ę.		\vdash	월	-	\dashv	+	+	+	—
Lodos activados	conforme	_	_	0.5	_		ш	aplicaciones	_			conforme	_	-		<u> </u>				o		_		_	_		iga		Ш	8	_	\dashv	+	+	+	_
Agua salobre	, Qu			Ju C				ap				ta						П		Ju							ap			숃						_
Agua de servicio	ĬĢ.			5				g				de clapeta															g			an						
Vapor	te			ις				para				cla								clapeta							pai			Sci		\neg	\top	\top	\top	_
	ē	-	_	2	⊨	-	-	Ē	⊨	_	-	e e	-	-	-	-	_		_	ар	_	_	_	-	-	_	酉		⊢≕	Ö	\rightarrow	\dashv	+	+	+	—
Destilados	ge	_	_	is	_		Ш	ció	_	_			_	<u> </u>		<u> </u>		Ц		U		_		_			pet		Ш	eta	_	\dashv	\dashv	\dashv	+	_
Fluidos explosivos	as			2				en				ció								de							cla			ар						
Lodos digeridos	Válvulas de retención			ŏ				de retención				en								ón							e			0		П	П	\Box		_
Fluidos con partículas sólidas	j,		\vdash	as	Н			ge	Т			et		\vdash				П		JĊ.		\neg			\neg		2		П	g	\neg	\dashv	\dashv	\top	\top	_
Mezclas (fluidos con minerales, arena,	_ >	-	\vdash	Válvulas de retención	H		\vdash	as (H			Válvulas de retención	_	\vdash	┢	\vdash		-	-	Válvulas de retención		\dashv	\vdash	\dashv	\dashv	_	Válvulas de retención de		\vdash	Válvulas de retención de clapeta oscilante conforme	-	+	+	+	+	—
, ,				ζą				Válvulas				38 0								re							en			nci						
gravilla, ceniza)		_	<u> </u>	_	L			á	_	_		Ē	_	-		<u> </u>				ğ		_		_	_		ret		\sqcup	te		\dashv	+	+	+	
Fluidos inflamables								>				á√								las							e e			9				\perp		
Agua de ríos, agua de lagos y aguas												>								N							as c	_		de	_					
subterráneas																				۷áا							la n			las						
Gas licuado			\vdash		Н				Т					\vdash				\Box						\neg			á 		\Box	7	\neg	\dashv	\top	\top	\top	_
	-	-	_	-	H	-			-	_	_		-	-	-	-	_	\vdash	-			_		_		_	Š		\vdash	/ál	-	\dashv	+	+	+	—
Fluidos con gas							ㅁ						_	ш			ш	\square			┛			Ц					Ш		_	\dashv	\dashv	\dashv	+	_
Gases																																				
Fluidos nocivos para la salud																		П																\neg		_
Fluidos tóxicos					Н									\vdash				П				\neg			\neg						\neg	\dashv	\dashv	\top	\top	_
		_	-	-	<u> </u>	-			-	F	Ē		-	-	-	-	_		-			_		_	_	_			_	H		+	+	+	+	—
Agua caliente				-	┖		ш				_		╚					\square											Ш			\dashv	+	+	+	
Agua de calefacción																																				
Fluidos muy agresivos																																	\Box	\Box		
Condensados					Н		П																						П			\dashv	\dashv	\top	\top	_
		-	_	-	-	-			-	_			-	-	-	-		\vdash				-			-	_			\vdash	H		+	+	+	+	_
Fluidos corrosivos		_		_	L				_				_	_		<u> </u>									_				Ш	-		\dashv	+	\perp	+	
Fluidos valiosos																																				
Combustibles																																				_
Agua de refrigeración		-	\vdash		H		П									\vdash		П				-		\neg								+	+	+	+	—
		-	-		-	-				_					-	\vdash			-							_		\vdash	╀		-	\dashv	+	+	+	—
Fluidos volátiles					_		Ш		_		_		_		_	_													\sqcup			\rightarrow	\perp	\perp	\perp	
Agua contra incendios		L	L			L			L	L_	L		L	L	L	L												L								
Disolventes																			\Box														\top	\top	\top	
Agua de mar			\vdash				\vdash														\vdash		\vdash	\neg					\vdash		\neg	+	+	+	+	—
-		<u> </u>	-		\vdash	-			\vdash		-			-	-	-					\vdash	-	\vdash	-	\rightarrow	_			\vdash		-	\dashv	+	+	+	—
Fluidos con aceite mineral			•		_				_		_		▣								Щ		\square					\vdash	\sqcup			\rightarrow	\perp	\perp	\perp	
Aceites						L			L	L_	L			L	L	L	L											L								
Fluidos orgánicos																																	T	T	Т	_
Fluidos que polimerizan/cristalizan							Н											H	\dashv		\Box		H	\neg	_				М		\dashv	\dashv	+	+	+	_
		F			-	\vdash	\vdash		=	_	-		-	\vdash	\vdash	\vdash					\vdash	-	\vdash	\dashv	-	-			\vdash		-	+	+	+	+	_
Fluidos radioactivos		_	_		<u> </u>		Ш						_	-			\vdash				\square		\square						\sqcup			\dashv	\perp	\perp	\perp	_
Detergentes		L	L		L				L		$oxed{oxed}$		L	\perp		\perp		П											\sqcup					\perp	\perp	
Lodos sin tratar																									T						T	T	T	Γ	Τ	_
Lubricantes																			\neg					\neg								\neg	\top	\top	+	_
			-		_				_				_			\vdash		-	-		\vdash	-	\vdash	\dashv	_	-			\vdash		-	\dashv	+	+	+	—
Aguas sucias		_	<u> </u>		<u> </u>	<u> </u>			_	<u> </u>	<u> </u>		<u> </u>	-	<u> </u>	\vdash	\vdash				\sqcup	_	\sqcup					፱	\sqcup			\dashv	+	+	\perp	_
Salmuera																		П																\perp	\perp	
Agua de alimentación							П				_								\neg													\top	Т	Т	Т	_
Pintura por inmersión																			\neg					\neg								\neg	\top	\top	\top	_
Agua potable							\vdash														\vdash	\neg	\vdash	\dashv	_				\vdash			\dashv	+	+	+	—
		-	\vdash		-	\vdash	\vdash		_	-	\vdash		_	-	\vdash	\vdash	\vdash		_		\vdash	-	\vdash	\dashv	-	_		<u> </u>	\vdash		-	\dashv	+	+	+	—
Vacío			<u> </u>		_	<u> </u>	Ш		_	_	_		_		<u> </u>	<u> </u>		\square			\square							_	\sqcup			_	\perp	\perp	\perp	_
Aceite térmico						L			L		L		L																							
Agua de lavado																								\Box							\Box		\top	\top		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							انب						_	_	_			ات.				_														—

			:55	۷		150-600	800										2			0) AIR													150-300		
		BOA-S	NORI 40 FSL/FSS	BOACHEM-FSA		ECOLINE FYC 150-600	ECOLINE FYF 800		BOAX-CBV13	BOAX-S/SF	BOAX-B	ISORIA 10/16	ISORIA 20/25	МАММООТН			APORIS-DEB02	DANAÏS 150	DANAÏS MTII	DANAÏS CRYO	DANAÏS CRYO AIR		TRIODIS 150	TRIODIS 300	TRIODIS 600		CLOSSIA		DUALIS		MP-CI/MP-II	PROFIN VT1		ECOLINE BLT 150-300	PROFIN VT2L	
		ĕ	ž	ĕ		ы	H		×	ĕ	ă	_	_	Σ	포		₹	Δ	Δ	Δ	۵		۲	۲	۴		ם		Ճ			<u> </u>		Щ	<u> </u>	_
Fluidos abrasivos Aguas residuales con materias fecales	a DIN/EN	_			Filtros conforme a ANSI/ASME	_		centrado								dad	_		-	-	_	de triple excentricidad	-			aplicaciones nucleares	H	ión	H	pieza	<u> </u>	⊬	bola de dos piezas	L	⊬	┝
Aguas residuales con materias recales Aguas residuales sin materias fecales		-	_	\vdash	MAS	<u> </u>		ntra	_	_					_	rici	-	-	-	-	-	rici	\dashv	_	_	cles	H	enc	-	a jid	\vdash	⊢	pie	H	⊬	⊣
Fluidos agresivos		-	-	П	NS	_		e ce								ent	-			-	\dashv	ent				nu s		ret	\vdash	de una		┢	dos		┢	┢
Fluidos inorgánicos	Filtros conforme			-	a /	H		e eje	_			Ħ			Ē	ě	H	-	-	\dashv	\exists	ě	_	_	_	ouc	Н	sa)	Н	a de	-	\vdash	g	F	\vdash	\vdash
Lodos activados	onfo				ı.			a de							_	ple						iple	\dashv			acic	Н	ipo		bola		\vdash	ola	⊢	\vdash	\vdash
Agua salobre	S				nfo			pos					ī			ope						e tr	\exists			plic		maı		e P		H	le b	_	\vdash	\vdash
Agua de servicio	E				8			Jari				П				a de				\Box			\Box				Г	de		las			Válvulas de			T
Vapor	Œ				tros			e u								300						pos				par		das		Válvulas			lu/			T
Destilados				П	讍		П	Válvulas de mariposa		П					Т	Válvulas de mariposa de doble excentricidad						mariposa	\Box			Válvulas de mariposa para	П	Válvulas combinadas de mariposa y retención		Ş			Vá			\vdash
Fluidos explosivos							П	vul		П	П	o		Г	╸	e m				П	\exists	e n	\Box			rip	Г	mb								
Lodos digeridos								Vál								as d						Válvulas de				ma		00 9								Г
Fluidos con partículas sólidas																vul						Vul				s de		ula								Г
Mezclas (fluidos con minerales, arena,																Vál						Vál				ulas		/álv								
gravilla, ceniza)		_															_		F							/álv		_	L	-		\vdash	-	_	\vdash	$oxed{\bot}$
Fluidos inflamables																	_													- 1		\vdash		_	<u> </u>	┡
Agua de ríos, agua de lagos y aguas subterráneas																														ı						
Gas licuado		H		H		<u> </u>			_	-	-	-			-		⊢								_		H		\vdash	1	\vdash	⊬		<u> </u>	⊬	├
Fluidos con gas		П					П		_	-	-	П		\vdash	 		H			-	-1		-	_	_		H				\vdash	\vdash		_	\vdash	\vdash
Gases		F	ī			Ħ	_				Ħ				_		-				╗				_		П		Н			H		F	\vdash	\vdash
Fluidos nocivos para la salud						-												F	F		-		-	_	_		-		Н		-	\vdash				H
Fluidos tóxicos									_											\Box	\exists						Г		Т			H			┢	\vdash
Agua caliente				-			П														\exists						П		Г			\vdash				T
Agua de calefacción										П	面										\neg															T
Fluidos muy agresivos																																П				Г
Condensados																																				
Fluidos corrosivos																																				
Fluidos valiosos																																L			\perp	L
Combustibles																	L				_									4 1		$oxed{igspace}$			igspace	L
Agua de refrigeración		_								ш											_			_						-	ш		-	■		╄
Fluidos volátiles						_				Щ	Щ	믜					-			\square	4								_	-		<u> </u>		_	<u> </u>	\vdash
Agua contra incendios		_		H						Н	Щ	믬	_		_		-			\square	\dashv		\square				H		_	-				_		\vdash
Disolventes		_				_				\square		핌	=	_			F	_	_	\vdash	_		\sqcup				H		Ļ	-	H	\vdash		_	\vdash	\vdash
Agua de mar												H	=				L			\vdash	\dashv						H		▝		H	\vdash		_	\vdash	\vdash
Fluidos con aceite mineral Aceites									_	H	H	H			H		-			\vdash	\dashv		H				H		\vdash							\vdash
Fluidos orgánicos		F										님		\vdash			-			\vdash	-						\vdash		-			-			-	+
Fluidos que polimerizan/cristalizan										\vdash	\vdash	ᆸ	_		H					\vdash	\dashv						\vdash				Н	\vdash			\vdash	\vdash
Fluidos radioactivos						\vdash									-					\vdash	\dashv		Ħ									\vdash		_	\vdash	\vdash
Detergentes										\vdash	\exists	Ħ	_	-					<u> </u>	\vdash	-		-	_	_		Н					\vdash		\vdash	\vdash	+
Lodos sin tratar										П	П	Ħ			Ē			Ī		\Box			\dashv						Г			\vdash			\vdash	\vdash
Lubricantes				П					П			П								\Box			П								Г					\vdash
Aguas sucias																							\Box													Г
Salmuera																																				
Agua de alimentación						ਾ																										\Box			\Box	L
Pintura por inmersión																	L			Ш			Ш						L			\perp		L	\perp	L
Agua potable				Щ		_			_								▝			Щ			Щ				L		▝					▝	╚	\perp
Vacío		L	_	Ļ		_				Щ	Щ						_	_	_	\square	_			_			L		_			<u> </u>		Ŀ	<u> </u>	\vdash
Aceite térmico											\square		_	_	_		_			\square	_						L		_	-	\vdash			•		\vdash
Agua de lavado																																				

		ECOLINE BLC 1000	PROFIN SI3	PROFIN VT3		SISTO-KB	SISTO-16	SISTO-16S	SISTO-16RGAMaXX	SISTO-16TWA	SISTO-20	SISTO-C		SISTO-20NA	SISTO-DrainNA		ZJSVM/RJSVM		ECOLINE GE1/GE2/GE3	ECOLINE GE4		MIL 10000	MIL 21000	MIL 27000	MIL 29000	MIL 41000	MIL 50000	MIL 70000	MIL 71000	MIL 76000	MIL 77000	MIL 78000	MIL 81000	MIL 91000		MIL 90000
Fluidos abrasivos	piezas				ÆN.								res			ass		ión			ME														ica	_
Aguas residuales con materias fecales Aguas residuales sin materias fecales	s pie	-		H	DIN/EN							┝	aplicaciones nucleares	-	╁	by-pass	-	expansión			control conforme a ANSI/ASME				\dashv		_			-				\dashv	recirculación automática	_
Fluidos agresivos	tre				e a	F	Ħ	ī					s nc		\vdash	g	H	exp	-	-	ANS	-	-	_	\dashv		_	-	-					\neg	autc	_
Fluidos inorgánicos	bola de tres	Ē			Válvulas de membrana con asiento elástico conforme a							-	one		T	urgencia y		Juntas de			e a				\exists									\neg	ión	_
Lodos activados	bola				conf								caci			dend		ınta			orm														ılaci	
Agua salobre	e				8	▝						L			L	n c	_	_ ~			onf		_											لـــا	Girc	_
Agua de servicio	ulas				lást	▝	H	_				L	para	_	╀	e de	L	_			o lo		\rightarrow			_					╀	_		Ц	e re	_
Vapor Destilados	Válvulas	H			to e	-	븜	H			H	-	na p	-	╀	cierre	H		_		ontr	H	=			Η	_	H	H		H	_	H	Н	as de	—
Fluidos explosivos		H			sien	-	-	_			-	-	membrana	-	╁	g	Г		H		de c	-	-	-	-	_	_	-	-	-	_	-			Válvulas	—
Lodos digeridos		Н			n a							H	ner		$^{+}$	Sistema	H				Válvulas de	\dashv	\dashv	\dashv	\dashv									\dashv	Vá	
Fluidos con partículas sólidas					a cc								de n			iste					álvu															
Mezclas (fluidos con minerales, arena,					ran								Válvulas de			01					>															
gravilla, ceniza) Fluidos inflamables		H			emk	H							álvu	H	╀		H		-							_						_				_
Agua de ríos, agua de lagos y aguas		H			le m	H		_					>		+		H					7	\exists	_	_			_	H	_						_
subterráneas			Н		as d																															
Gas licuado					Ivul																															_
Fluidos con gas	-				Š	L		_				<u> </u>		L	╀		_		<u> </u>				-		\dashv	_	≞	_	_	•		_	믜			_
Gases Fluidos nocivos para la salud		H					믐				H		-		+-		-		-							-	H				=	=	H			—
Fluidos tóxicos		f	-	-		F	H	i				E		E	+		H								=	=	Ħ			Ē	i	i	H	Ħ		_
Agua caliente		Ē										-			T		r														Ī	Ī		Ē		_
Agua de calefacción																																				
Fluidos muy agresivos						L						L			L		L																	لــا		
Condensados		H		-		L		_						_	╀		L		_				-			_	₽			-	=	_	님	ઘ		
Fluidos corrosivos Fluidos valiosos		F		-		╚		_				-		-	╀		H		H						\dashv				-							—
Combustibles		П				┝						\vdash			+		H								\dashv							_	П	П		_
Agua de refrigeración														F	\vdash		H						\rightarrow			Ī	_				Ī	Ī		Ħ		
Fluidos volátiles																																				
Agua contra incendios																																				
Disolventes															_		L					_	_										Ш	\square		
Agua de mar Fluidos con aceite mineral		L					븜	-			-			L	╀	_	H	-						_	\dashv	=							\square	\vdash		—
Aceites		H						-				-		\vdash	╁		H		-				_			=		_	H					\vdash		—
Fluidos orgánicos		F	_	-		F	Ē				=				+		H					_		_	-	ī		_	_	Ē				\dashv		—
Fluidos que polimerizan/cristalizan						_	-					$\overline{}$			†		Г					T	T											\neg		
Fluidos radioactivos												-																								
Detergentes																																		┛		_
Lodos sin tratar		_				-	_	_				⊬		_	\vdash		H		_			_	_			_	_				_	_				_
Lubricantes Aguas sucias		-					믐	_				\vdash		-	\vdash		-									_										—
Salmuera				\vdash			_					\vdash			+		H							\dashv	\dashv		\vdash		\vdash	\vdash			H	\dashv		—
Agua de alimentación						Ē	_	_			Ē	T			†				П			_											d	d		
Pintura por inmersión																																				_
Agua potable															L				▣			\rightarrow	\rightarrow							•						
Vacío		L	_			_								_	\vdash		_		_			\rightarrow		_	_	_	_	_			_		듸			_
Aceite térmico Agua de lavado		-				-	_					\vdash		-	\vdash		_		_						-		_			•				\vdash		_
Agua de lavado				_		_																											ш			—

Fluidos productos regionales Chile

rialaos productos		- 5		_																															
								9																											
								ECOLINE GTR16p/GTR16o																											
								٩								ی	,																		
								/д								ECOLINE CTGM NG		4	0 9	2 0								щ			PROFIN-SI3IT	3S			
		ECOLINE VA40		U		LYNX 3 F - RFP		2						ECOLINE RA16	ECOLINE KA40	2	;	ECOLINIE DC 42E	ECOLINE DC 129	ECOLINE DC 300		16					щ	PROFIN-VT2F TF	Ę		_	Ğ			
		\$		ECOLINE XLC				5						≨ 3	₹	t	;	2	2 2	2		z		8	Eco HP 300T		PROFIN-VT2F	7	PROFIN-VT2H		<u>= = = = = = = = = = = = = = = = = = = </u>	Ξ			
		岁		뿔		3.5		끨		y .	_		SR 20.40	뿔	뷜	벌	!	2	<u> </u>	뿔		Filtro Y PN		Eco HP 300	Ä		ź	ź	ź		ž	ź			
		긍		긍		×		7		S	2		20.	2 2	5	=	i	=	3 5	2		2		Ξ	Ī		든	F	F		Ē	Ē			
		ũ		ũ		Σ		ũ		CYL SK	CYL SL		SR	Ŭ.	ב	ŭ		Š	ַ וַ			li		Ä	Ä		<u>R</u>	PR.	PR.		<u>R</u>	E.			
Fluidos abrasivos	_		-		-		-		_						-	,			Т		-		~			S			\Box		\neg	П	Т	Т	_
Aguas residuales con materias fecales				\vdash		-	VEN		Ē			<u> </u>	\dashv	+			- 2	<u> </u>	+	+	New Year	-	dac	_	_	iezas		\vdash	\vdash	sza	\dashv	\dashv	+	+	—
Aguas residuales con materias fecales Aguas residuales sin materias fecales	a DIN/EN	-		-		\vdash	DIN/EN	H			4	conforme a ANSI/ASME	\dashv	\dashv	= =		3	₹ .			a DIN/EN	H	excentricidad	П			_			Válvulas de bola de tres piezas			\dashv	+	—
	ø	-	o c		g	_	Ø	-	g			S	\dashv	-	- 0	σ	2	2 -	H	_	g	H	ent	H	_	gos	_			res	_	\rightarrow	\dashv	\dashv	—
Fluidos agresivos	Ĕ	_	٤	H	ΨĔ	_	ŭ	-	Ĕ	\vdash	-1	٩₽	\dashv	\dashv	_ }	Ĕ	- {	ם –			Ĕ	_	exc	_		ge	_		Н	e T			\dashv	+	—
Fluidos inorgánicos	اعَ	_	Je	_	اوَ	_	Je	_	Je		_	Je l	-	-	4	contorme	- 8	<u>=</u> =	-		Filtro conforme	_		┖		bola de dos p				la c			\dashv	\dashv	_
Lodos activados	9	_	9	_	9	_	Sor	_	Ö	_	ㅢ.	5	_	-	_ 3	<u> </u>	_ 3	5_	+	+	0.0	_	de doble		_	pc		Ш	Ш	<u>a</u>	_	_	\dashv	\dashv	_
Agua salobre	Sas	_	ón		용	L	rta	_	ón			on	_	_	_ 5		- 3				5	_	ge (/álvulas de	_	Ш	ш	8			\dashv	\dashv	_
Agua para servicios industriales	ţ		esi		- Sua	L	ne	_	nci			a	_	_		<u>ĕ</u> _	_ 5	= _			壸					ılas		П	П	ılas			_	4	
Vapor	aes		Q		\parallel		m		ete		1	渡				Па	1		1				lodi			áΙνι			П	<u> </u>					
·	prensaestopas conforme		s de		ga	,	0		Je r			guillotina			- 3	de mariposa	4	<u> </u>					nar			>				>				\perp	
Destilados			ora		Jure		de]	as c				Ī			u l	3	20					de mariposa										T		
Fluidos explosivos	100		ICT		e p		ılas		Válvulas de retención conforme a DIN/EN		-	s de				ğ	7	sac					as d					┌┐							_
Lodos sépticos	Válvulas de globo con		Válvulas reductoras de presión conforme a DIN/EN		Válvulas de purga y llenado conforme a DIN/EN		Válvulas de compuerta conforme		Vál		1	Válvulas de	\Box		+	valvulas de retención	-	Valvulas de retención conjórme a Ansi/Asivie	\top				Válvulas					П				\Box			_
Fluidos con partículas sólidas	일		as r		Ī		>					a⊠	T		3	e	7	2					/á/					П						T	_
Mezclas (fluidos con minerales, arena,	e G		VILL		ζą						1	>		\neg	7	ls d	-	> -	\top									П			\exists	\exists	\top	十	_
gravilla, ceniza)	as c		Vál								-1				-													ıl							
Fluidos inflamables	N N														177	a)												П				T		\Box	_
Agua de río, agua de mar y aguas	Vál							\neg											Τ_	.1_													\neg	\top	_
subterráneas																			-										ы						
Gas licuado																												П					\neg	\Box	_
Fluidos con gas													T																П					\Box	_
Gases													一	\neg						_					П				П				\top	十	_
Fluidos nocivos para la salud													\dashv					F		_							Ī	\vdash	Ħ	-			+	\top	_
Fluidos tóxicos								\neg				-		\neg					╅	+-		Н		-			_	\exists	\exists		\exists	\exists	+	+	—
Agua caliente								\neg				-	\dashv		-												П	П	П				+	+	_
Agua de calefacción		E		-		-		-			-	-	\dashv	_			-			_		H		F	Ħ		Ī	H	Н	-			+	+	—
Fluidos muy agresivos	-	₽		-		_	-	-			-	-	\dashv	-1	-	_	-	-		-	-	-		-	-		-				-	-	+	+	_
Condensados								\dashv			-	-	\dashv	_	-	_	-		-		-			_	_		_			-			\dashv	+	—
	-	H		-		-		-			-	-	\dashv		-	_	-	-		_		-		L	H		_	Н	띰	-	\rightarrow		\dashv	\dashv	—
Fluidos corrosivos	-	_		L		_		_			_	-	-	-		_	4	_	_		-	_		┖	_		_						\dashv	\dashv	_
Fluidos valiosos	-	_	-	_		_		_		\vdash	4	-	_	-		_	4	L	+	+	-	_			_			Ш	Ш	-	_	\dashv	\dashv	\dashv	_
Combustibles						_					4		_	\rightarrow			4	L		_		_		ш	ш			Ц	ㅁ	-	\rightarrow		\dashv	4	_
Agua de refrigeración						▝											4	L						┖	፱			П	П			-	\perp	\perp	_
Fluidos volátiles																												Ш							
Agua para extinción de incendios		L		L		L							Ĩ	\Box						L		L		L				آلے]		\Box		_
Disolventes													_ 7	$_{\perp}$ T																			T	T	_
Agua de mar														\neg																				\top	_
Fluidos con aceite mineral																													回				\neg	\top	_
Lubricantes													\neg	T)															П				\neg	\neg	_
Fluidos orgánicos														\dashv					\rightarrow										_	-	\rightarrow	\rightarrow	\top	\forall	_
Fluidos que polimerizan/cristalizan								\neg					\dashv	\dashv					\top	1								\neg	\Box			\dashv	\top	\top	_
Fluidos radioactivos								\neg		\vdash			\dashv	\dashv					+	\top					П			\neg	\square		\dashv	\dashv	+	+	_
Detergentes								\dashv		\vdash			\dashv	\dashv																			+	+	_
Lodos sin tratar								\dashv		\vdash			\dashv	+					+	╅				Ē	_		_	귀	H		귀	\exists	+	+	—
Lubricantes								\dashv		\vdash			\dashv	+					+	+		\vdash						\dashv	\vdash		\dashv	\dashv	+	+	_
Aguas sucias						\vdash							\dashv	+															П				+	+	—
						\vdash		-					\dashv	+						_		\vdash		H			=	-	H				+	+	—
Salmuera		-		H		-		-		\vdash	-		\dashv				-		_	_		<u> </u>		-			_	-		-	\rightarrow	\rightarrow	+	+	—
Agua de alimentación		-						-		\vdash	-		-				-		-			▝											\dashv	+	_
Pintura por inmersión		-		L		L		ᆜ		\vdash	4		_	_						+		<u> </u>		_	_		_				_	_	\dashv	\dashv	_
Agua potable						-				\vdash			_												Ш							┛	\dashv	\dashv	_
Vacío														\perp					\perp	_		_						Ш	Ш			\square	\dashv	_	_
Aceite térmico													_																_	-		_	\perp	\perp	_
Agua de lavado																																	\perp	\perp	_

Resumen de aplicaciones

Fluidos productos regionales Chile

Aguas readulates com materias fecales	•																									
Aguas residuales sin materias fecales																										
Aguas residuales sin materias fecales																										
Aguas residuales sin materias fecales			0																							
Aguas residuales sin materias fecales			<u>0</u>																							
Aguas residuales sin materias fecales			20																							
Aguas residuales sin materias fecales			Ξ:																							
Aguas residuales sin materias fecales			ES S	:																						
Aguas residuales sin materias fecales			뿔 :	:																						
Aguas residuales sin materias fecales			크	3																						
Aguas residuales sin materias fecales			<u> </u>	2																						
Aguas residuales con materias fecales Aguas residuales im materias fecales Fluidos agressivos Fluidos agressivos Fluidos agressivos Agua salotre Agua para servicios inductivales Egis Pluidos replacivos Destinados Fluidos explosivos Lodos explosivos Lodos explosivos Lodos explosivos Lodos explosivos Fluidos con particulas solidas Mezcias (fluidos con mierarelas, arena, gravilla, ceniza) Fluidos con particulas solidas Mezcias (fluidos con mierarelas, arena, gravilla, ceniza) Fluidos fluidos con superales Subterraneas Gas licuado Fluidos notos gas al Subterraneas Gas licuado Fluidos notos gas Subterraneas Gas licuado Fluidos notos para la salud Fluidos con gas Condensados Fluidos corroivos para la salud Fluidos mulga gresions Condensados Fluidos corroivos para la salud Fluidos mulga gresions Condensados Fluidos corroivos para la combinado de calefacción Fluidos corroivos Fluidos C	- Eluidos abrasivos																						1			\neg
Aguas residuales sin materias recales		zas	-	-	\vdash	-	\vdash	_	-	+			+-	_	-	+	-	-	H	\blacksquare	-	-	+	+-		+
Fluidos agresivos Fluidos argenios Fluidos Agua sallore Agua para servicios industriales Vapor Agua para servicios industriales Vapor Bluidos explosivos Lodos septicos Fluidos con particulas solidas Mezdas (fluidos con minerales, arena, gravilla, ceniza) Fluidos fluidos con minerales, arena, gravilla, ceniza) Fluidos fluidos con minerales Agua de río, agua de mar y aguas subternaes Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos cortos para la salud Fluidos nocivos para la salud Fluidos more salud Fluidos vicios Agua calente Agua de calefacción Fluidos valicos Condensados Fluidos valicos Combustibles Agua para extinción de inendios Disolventes Agua de mar Fluidos oracite mineral Lubricantes Fluidos que polimentancirios al Fluidos redicios redicios Fluidos que polimentancirios al Fluidos redicios redicios Detergenes Lodos sin tratar Lubricantes Agua de alimentación Fluidos valoles Salmuera Agua de alimentación Fluidos por polable Agua pra la		pie	-	_	\vdash	_	_	_	_	-			+	_	_	_	_	_	_			_	\vdash	\vdash		+
Agua para servicios industriales		res	_	4	\vdash		_	_		+	-		_	_	_	+		_	_		_	_	\perp	\vdash		
Agua para servicios industriales		e																					\perp			
Agua para servicios industriales		ad														\perp										
Agua para servicios industriales	Lodos activados	log																								
Fluidos explosivos Lodos sépticos Fluidos con particular, ceniza) Fluidos con imerales, arena, gravilla, ceniza) Fluidos inflamables Agua de rio, agua de mar y aguas subterráneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos toxicos Agua caliente Agua de calefacción Fluidos my agresivos Condensados Fluidos con coresivos Fluidos con coresivos Fluidos con coresivos Agua para extinción de inendios Disolventes Agua para extinción de inendios Disolventes Fluidos con acerte mineral Lubricantes Agua portable Agua sucias Salmuera Agua be alimentación Pintura por inmersión Agua portable Vacio Acerte termico # I	Agua salobre	<u>ا ج</u>																					Т			
Fluidos explosivos Lodos sépticos Fluidos con particular, ceniza) Fluidos con imerales, arena, gravilla, ceniza) Fluidos inflamables Agua de rio, agua de mar y aguas subterráneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos toxicos Agua caliente Agua de calefacción Fluidos my agresivos Condensados Fluidos con coresivos Fluidos con coresivos Fluidos con coresivos Agua para extinción de inendios Disolventes Agua para extinción de inendios Disolventes Fluidos con acerte mineral Lubricantes Agua portable Agua sucias Salmuera Agua be alimentación Pintura por inmersión Agua portable Vacio Acerte termico # I	Agua para servicios industriales	as (
Fluidos explosivos Lodos sépticos Fluidos con particular, ceniza) Fluidos con imerales, arena, gravilla, ceniza) Fluidos inflamables Agua de rio, agua de mar y aguas subterráneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos toxicos Agua caliente Agua de calefacción Fluidos my agresivos Condensados Fluidos con coresivos Fluidos con coresivos Fluidos con coresivos Agua para extinción de inendios Disolventes Agua para extinción de inendios Disolventes Fluidos con acerte mineral Lubricantes Agua portable Agua sucias Salmuera Agua be alimentación Pintura por inmersión Agua portable Vacio Acerte termico # I		N N		_			Г						1		\neg					П			\top			\top
Fluidos explosivos Lodos sépticos Fluidos con particular, ceniza) Fluidos con imerales, arena, gravilla, ceniza) Fluidos inflamables Agua de rio, agua de mar y aguas subterráneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos toxicos Agua caliente Agua de calefacción Fluidos my agresivos Condensados Fluidos con coresivos Fluidos con coresivos Fluidos con coresivos Agua para extinción de inendios Disolventes Agua para extinción de inendios Disolventes Fluidos con acerte mineral Lubricantes Agua portable Agua sucias Salmuera Agua be alimentación Pintura por inmersión Agua portable Vacio Acerte termico # I		Vál	─ -				Г			\top		\vdash	+		\dashv	\top				\vdash		\top	+	\vdash		+
Fluidos con particulas solidas Mezclas (fluidos con minerales, arena, gravilla, ceniza) Fluidos infilmabiles Agua de río, agua de mar y aguas Sas licuado Fluidos nocivos para la salud Fluidos nocivos para la salud Fluidos nocivos para la salud Fluidos muy agresivos Condensados Condensados Fluidos valiosos Condensados Fluidos valiosos Combustibles Agua de refrigeración Fluidos valiosos Combustibles Agua para extinción de incendios Disolventes Agua para extinción de incendios Disolventes Fluidos con aceite mineral Lubricantes Fluidos organicos Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Agua be alimentación Fluidos que polimerizan/cristalizan Agua sucias Salmuera Agua potable Vacio Aceite tetricio # I					\vdash		\vdash			+		\vdash	+		+	+				\vdash		+	+	+		+
Fluidos con minerales, arena, gravilla, ceniza) Fluidos inflamables Agua de río, agua de mar a guaus Subteráneas Gasicuado Fluidos nocivos para la salud Fluidos toxicos Agua de alimentación Fluidos muy agresivos Condensados Fluidos ororsivos Fluidos corrosivos Fluidos my agresivos Condensados Fluidos corrosivos Fluidos my agresivos Fluidos corrosivos Fluidos my agresivos Fluidos corrosivos Fluidos my agresivos Fluidos corrosivos Fluidos qualeses Agua para extinción de incendios Disolventes Agua para extinción de incendios Disolventes Fluidos con aceite mineral Lubricantes Fluidos que polimerizan/cristalizan Fluidos remensión Agua de alimentación Pintur por immerión Agua potable Vació Aceite térmico Aceite térmico Aceite térmico Aceite térmico Aceite térmico					\vdash		\vdash	-		+		\vdash	+		+	+			-	\vdash		+	+	+-		+
Mezclas (fluidos con minerales, arena, gravilla, ceniza) Fluidos inflamables Agua de río, agua de mar y aguas subteráneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos tóxicos Agua caliente Agua de calefacción Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos valiosos Combustibles Agua de refrigeración Fluidos valiosos Combustibles Agua para extinción de incendios Disolventes Agua para extinción de incendios Disolventes Fluidos vagínicos Fluidos orgánicos Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Lubricantes Agua de alimentación Pintura por immersión Agua sucias Agua de alimentación Pintura por immersión Agua para sucias Agua de alimentación Pintura por immersión Agua pastable Vacio Acete térmico Acete termico Acete térmico Acete termico Acete termico		-	_	-	\vdash	-	H	-		+	-		+-		-	+	-	-	H	\vdash	-	-	+	+-	_	+
Section Sect		-	_	4	\vdash	4	H	-		+	-		+		+	+	_	4	_	Ш		_	+	\vdash	_	+
Fluidos inflamables Agua de río, agua de mar y aguas subterràneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos tóxicos Agua caliente Agua de calefacción Fluidos muy agresivos Condensados Fluidos volatiles Fluidos volatiles Agua para extinción de incendios Disolventes Agua a extinción de incendios Fluidos volatiles Fluidos con aciente mieral Lubricantes Fluidos orgánicos Fluidos que polimerizan/ristalizan Fluidos que polimerizan/ristalizan Fluidos radiactivos Detergentes Agua de alimentación Piluidos radiactivos Detergentes Agua sucias Agua de alimentación Piluidos radiactivos Detergentes Agua sucias Agua de alimentación Piluidos radiactivos Detergentes Agua sucias Agua de alimentación Pilutrar por inmersión na la																										
Agua de río, agua de mar y aguas subterráneas Gas licuado Fluidos con gas Gases Gases Fluidos norivos para la salud Agua de calefacción Fluidos my agresivos Condensados Fluidos vagresivos Fluidos vorivos Gases Fluidos valicoso Fluidos valicoso Gombustibles Agua de refrieración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos rodaicos Salmuera Agua de alimentación Fluidos ritartar Lubricantes Agua sucias Salmuera Agua de alimentación Fintura por inmersión Fintura por inmersión Agua potable Vacio Aceite térmico Aceite ritemico					\vdash	_		_	_	-	-		+		_	-		_	_		_	_	+	\vdash	-	+
Subterráneas Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos tóxicos Agua caliente Agua calefacción Fluidos my agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos validos sos Combustibles Agua de refrigeración Fluidos validies Agua para extinción de incendios Disolventes Agua de mar Fluidos con cale mieneal Lubricantes Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua de alimentación Piritura por inmersión Agua sucias Agua de alimentación Piritura por inmersión Agua patable Vacie termico Agua patable Vacie termico Fluidos valores Agua patable Vacie termico Fluidos ron primersión Agua patable Vacie termico Fluidos valores Agua patable Vacie termico Fluidos valores Fluidos valores Agua patable Vacie termico Fluitor primersión Agua patable Vacie termico Fluidos Vacio Acette termico Fluidos Vacio Fluidos ron primersión Agua patable Vacie termico Acette termico		-			\vdash										_						_		\perp	\sqcup		
Gas licuado Fluidos con gas Gases Fluidos nocivos para la salud Fluidos tóxicos Agua caliente Agua de calefacción Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos corrosivos Fluidos valiosos Combustibles Agua de refrigeración Fluidos valiates Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos que polimerizan/cristalizan Fluidos fradioactivos Detergentes Lodos sin tratar Lubricantes Agua de alientación Piritura por jor immersión Agua para bele Vacio Piritura por immersión Agua para bele Vacio Piritura por immersión Agua para bele Vacio Vacio Piritura por immersión Agua parabele Vacio Vaci																										
Fluidos con gas Gases Fluidos nocivos para la salud Fluidos tóxicos Agua caliente Agua ecalefacción Fluidos my agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos corrosivos Combustibles Agua de refrigeración Fluidos volátiles Agua de mar Fluidos con aceite mineral Lubricantes Fluidos que polimerizant/ristalizan Fluidos que polimerizant/ristalizan Fluidos so patroco Fluidos que polimerizant/ristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua sucias Aguas sucias Agua be mar Fluidos radioactivos Fluidos radio					\vdash		_	_			_		_	_	\perp	_	_	_			_	_	\perp	\sqcup		
Fluidos nocivos para la salud Fluidos tóxicos Agua caleinet Agua de calefacción Fluidos valorsos Condensados Fluidos valorsos Fluidos valorsos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos orgánicos Fluidos orgánicos Fluidos orgánicos Fluidos orgánicos Fluidos rogánicos Fluid																							\perp			
Fluidos nocivos para la salud Fluidos toxicos Agua caliente Agua de calefacción Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos valisosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos que polimerizantristalizan Fluidos que polimerizantristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua de alimentación Fluidos que polimerizantristalizan Fluidos que polimerizantristalizan Fluidos adioactivos Detergentes Lodos sin tratar Lubricantes Agua de alimentación Fluidos que polimerizantristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua de alimentación Fluidos que polimerizantristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua de alimentación Fluitura por immersión Agua potable Vacio Aceite térmico Aceite térmico Aceite térmico	Fluidos con gas									\perp						\perp										
Fluidos tóxicos Agua caliente Aqua de calefacción Fluidos muy agresivos Condensados Fluidos valiosos Fluidos valiosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos ora aceite mineral Lubricantes Fluidos ora aceite mineral Fluidos ora aceite mineral Lubricantes Fluidos ora de mar Fluidos ora aceite mineral Lubricantes Fluidos que polimerizandristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmura Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico	Gases																									
Agua de calefacción Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos valiscos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua se alimentación Fluidos radioactivos Detergentes Agua de amer Agua de mar Fluidos radioactivos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Agua de alimentación Fluidos radioactivos Detergentes Agua de alimentación Agua potable Vacio Aceite termico I I I I I I I I I I I I I I I I I I I	Fluidos nocivos para la salud																									
Agua de calefacción Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos valicosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos orgánicos Fluidos orgánicos Fluidos radiocactivos Detergentes Lodos sin tratar Lubricantes Agua sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico	Fluidos tóxicos																									
Agua de calefacción Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos corrosivos Fluidos valicosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos orgánicos Fluidos orgánicos Fluidos radiocactivos Detergentes Lodos sin tratar Lubricantes Agua sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico	Agua caliente																									
Fluidos muy agresivos Condensados Fluidos corrosivos Fluidos valisosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico													1		\neg								\top			\top
Condensados Fluidos corrosivos Fluidos valiosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos orgánicos Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua sucias Agua de alimentación Pintura por inmersión Agua patable Vacio Aceite térmico				_						+					\dashv	+						\dashv	+	+		\top
Fluidos valiosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico		1		_		-				+			+		_	+		1				_	+	+		+
Fluidos valiosos Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Agua sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico						-		\dashv	-	+			+	-	+	+	-	-	\vdash	\vdash		+	+	+	-	+
Combustibles Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico		-		-	\vdash	-			\vdash	+	-		+		+	+		+	\vdash	\blacksquare	-	-	+	+	-	+
Agua de refrigeración Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacio Aceite térmico		-			\vdash	-		_	\vdash	-			+-	_	_	-		-	-		-	_	+	+	-	+
Fluidos volátiles Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico			_	_	\vdash			_	-	+			-	_	\perp	+		_	_		-	+	\perp	\vdash	_	+
Agua para extinción de incendios Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico		-			\vdash				_	\perp						\perp					_		_	\sqcup	_	
Disolventes Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico										\perp						\perp										
Agua de mar Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico	Agua para extinción de incendios																		L							
Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico	Disolventes																									
Fluidos con aceite mineral Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico	Agua de mar																									
Lubricantes Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Ludos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico																										\top
Fluidos orgánicos Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico										\top					\neg	\top				П			T			\top
Fluidos que polimerizan/cristalizan Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico			_							\top					\dashv	\top				П		\top	\top			\top
Fluidos radioactivos Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico										\top					\dashv	+						\top	+	\vdash		+
Detergentes Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico		-		-						+			+	-	+	+			\vdash			+	+	+		+
Lodos sin tratar Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico		-	-	-	\vdash	-		-	H	+	-		+	-	_	+		\dashv	\vdash		-	+	+	+	-	+
Lubricantes Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico		-	-	-		-	\vdash		H	-	-		+		-	+		-	-		-	-	+	+-	-	_
Aguas sucias Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico					\vdash		_	_		+		\vdash	+		+	+			_	\vdash		+	+	+-		+
Salmuera Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico					\vdash		_			+		\vdash	+		_	+			_			+	+	+		+
Agua de alimentación Pintura por inmersión Agua potable Vacío Aceite térmico			\perp		\vdash		\vdash			_			_		_	\perp				Ш		\perp	\perp	\sqcup		_
Pintura por inmersión Agua potable Vacío Aceite térmico										\perp						\bot						\perp	\perp			\perp
Agua potable Vacío Aceite térmico										\perp						\perp										
Agua potable Vacío Aceite térmico	Pintura por inmersión																							\perp^{-1}		
Vacío Aceite térmico □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □																T										\top
Aceite térmico															\neg											\top
										\neg					\neg	\neg				П		\top	\top			\top
9			+							\top			\top		\dashv	\top				П		\top	\top	\vdash		\top

							≥			AB		0															0	0		0				
	BOA-SuperCompact		ΚB			7	NORI 40 ZXLBV/ZXSBV	NORI 40 ZXLB/ZXSB	NORI 40 ZYLB/ZYSB	BOACHEM-ZXAB/ZYAB		ECOLINE GLB 150-600	8		S	XSF	S !	NORI 160 ZXLF/ZXSF						O.E.	SICCA 900-2500 GLC	SICCA 150-4500 GLF	ECOLINE GLC 150-600	ECOLINE GLF 150-600	0	ECOLINE GLV 150-300				
	Com	t	BOA-Compact EKB			BOA-H BOA-H/HE/HV/HEV	LBV/	LB/Z	LB/Z	ZXA		.B 15	ECOLINE GLB 800		NORI 40 ZXL/ZXS	NORI 40 ZXLF/ZXSF	NORI 160 ZXL/ZXS	, F	SS	X > <	X	116		SICCA 150-600 GLC	2500	1500	.C 15	.F 15	ECOLINE GLF 800	.V 15				
	per	BOA-Compact	mp			H	X	X	/Z (ΕĀ		E G	E GL		X	X	20 Z	700	NORI 320 ZXSV	NOKI 500 2XSV	BOACHEM-ZXA	ECOLINE VA16		20-6	00-7	20-7	E GL	E GL	E GL	E GL				
	A-Su	Α̈́	A-Co	BOA-W		BOA-H	R 4	R 4	R 4	ACH		Z	Z		R 4	₽ 4	Z ;	Z ;	2 3	<u> </u>	A G			5	8	8	Z	Z	Z	Z				
	BO,	BO,	BO,	80 [′]			2	8	8	80 [']		П	EC		9	9	9	2	9 9	2	80	ы П		S	SIC	SIC	EC	E	E	E				
Riegos por aspersión					EN						ME			EN				1	\perp				ME -								П	\Box	\Box	
Riegos por aspersión Minería Regadíos Industria química Aumento de presión Eliminaciones Achiques/drenajes Instalaciones descascarilladoras Sistemas urbanos de calefacción	_	-			DIN/EN	_	_	-	_	Ш	ANSI/ASME		Ш	a DIN/EN			- I	-1		-	_	_	/ASI	_	_		\vdash	Ш		Ш	\square	\dashv	\dashv	
Regadíos Industria química	-	╀	Н		σ_	+				H	ISN	_	Н] a e						+		-	ISN -	\dashv	\dashv	\dashv	\vdash	\vdash	\vdash	\vdash	$\vdash \vdash$	\dashv	\dashv	—
Aumento de presión		+	Н		E -		-	╫	-	Н	aA		\vdash	rme	-	-	-	-1		-	-	-	a –	\dashv	\dashv	-	\vdash	Н	Н	Н	\vdash	+	\dashv	_
Eliminaciones		\vdash	Н		Jug	+	+	+		Н	conforme a		Н	conforme	\neg	\dashv	+	+	+	\dashv	\dashv	-	rme	\dashv	\dashv	\exists	\dashv	Н	Н	Н	\vdash	+	+	_
Achiques/drenajes		\vdash	П		e co		\top	\top		П	nfo		Н	SS CC		\dashv	\dashv	\top	\top	\forall	\dashv	_	- lug	\dashv	\dashv	\neg	\neg	П	П	П	\Box	\top	\dashv	_
Instalaciones descascarilladoras			П		nell									prensaestopas									SCO				\Box			П		\top	寸	_
Sistemas urbanos de calefacción					on f						con fuelle			aest									oba											
Transporte de sólidos					0						in fi			ens						\Box			est									\Box	\Box	
Sistemas contra incendios		\perp	Ш		9		_	_		Ш	0		Ш			_	_	4	4	4	_		sus				\square	\square	\square	\square	Ш	_	_	
Transporte de sólidos Sistemas contra incendios Tuberías de gas Acumuladores de gas Mantenimiento del nivel freático Abastecimiento de agua doméstica Sistemas de calefacción, climatización y ventilación Homogeneización		-	Ш		Válvulas de globo con fuelle conforme	_	+	\vdash	_	Ц	odolg		Ц	Válvulas de globo con	_	_	4	4	\perp	4	4	_	Válvulas de globo con prensaestopas conforme a ANSI/ASME				لـــا	\sqcup	Ш	Ш	\square	\dashv	\dashv	_
Acumuladores de gas		\vdash			las	_	-	-			de g		Ш	oqo	_	\dashv	\dashv	+	+	4	\dashv	_	9	\dashv	\dashv	\vdash	\vdash	\vdash	\square	\square	\square	\dashv	\dashv	—
Mantenimiento del nivel freático Abastecimiento de agua doméstica	5	+			álvu	+	+	+	-	Н	as c		$\vdash \mid$	e gl	\dashv	\dashv	+	+	+	+	\dashv		ogo	\dashv	\dashv	\dashv	\dashv	H	H	Н	\vdash	\dashv	\dashv	_
Sistemas de calefacción, climatización y	3	\vdash			> -	+	+	+		\vdash	Válvulas	_	\vdash	b se	\dashv	\dashv	\dashv	+	+	\dashv	\dashv	-1	<u>g</u>	\dashv	\dashv	\dashv	\vdash	Н	Н	Н	$\vdash \vdash$	\dashv	\dashv	—
ventilación							1				Vá			vula									s de				, !							
Homogeneización	3	\top												Vál				T		T	T		ula	T	\exists							\top	\top	_
Sistemas de recirculación industrial																							Vál											
Centrales nucleares							-																											
Alimentación de calderas		\perp															I											П	П		Ш	\perp	\dashv	
Reirculación de calderas	_	\perp																		•	4		_	_	_		\square	\sqcup	\square	\square	\square	\dashv	\dashv	
Plantas depuradoras	H	+				_	-	+	-				Н		-	-	-	+	+	\dashv	4	_		\dashv	\dashv	-	\vdash	Н	Н	Н	$\vdash \vdash$	+	\dashv	_
Instalaciones de climatización Transporte de condensados						+				H			\vdash				+	+	+	+	\dashv	-	-	\dashv	-	-	\vdash	Н	H	Н	\vdash	+	\dashv	—
Centrales eléctricas convencionales	\vdash	\vdash					-	┼-	-				\vdash			_					\dashv		-								\vdash	+	+	_
Circuitos de refrigeración										\Box			Н		_	_		7		7	\forall		-	_	7		\vdash	\vdash	\vdash	П	\Box	\top	\dashv	_
Sistemas de pintura			П													\dashv	\top	\top	T	\top							\Box			П		\top	寸	_
Industrias alimentaria y de bebidas													回					T		\dashv											П		T	
Desalación/ósmosis inversa																																		
Mezclas		_	Ш				_	_	_	Ш						_	4	4	4	4	4	_	_	_	_		لـــا	Ш	Ш	\square	Ш	\dashv	_	_
Industria papelera y de celulosa	L	\vdash	Ш					1_	_			_			\rightarrow	\rightarrow			-	-	-		-	\rightarrow		띰					\square	\dashv	\dashv	_
Industria petroquímica	H	\vdash	Ш										ㅁ				- 1	-1	- '	4	-	_						Ц	Ц		\square	\dashv	\dashv	—
Industria farmacéutica Tuberías y depósitos	H	\vdash	Н		-	-	+	+		-		_	Н	ŀ		\dashv	\dashv	+	+	\dashv	\dashv	_	-						Н	Н	$\vdash \vdash$	\dashv	\dashv	_
Refinerías	\vdash	+	Н	-		+	+	+		Н			Н		-	\dashv	+	+	+	+	\dashv	\dashv	-	\rightarrow		H	H	-	H	H	\vdash	+	+	_
Desulfuración de gases de combustión	\vdash	+				+	+	+		\vdash			Н	ŀ	\dashv	\dashv	\dashv	+	+	\dashv	\dashv			_	\exists	\equiv	\vdash	\vdash	\vdash	\vdash	\vdash	\dashv	\dashv	_
Recogida de agua de Iluvia		\vdash					\top	\dagger					Н			\dashv	\dashv	\top	\top	\dashv	\dashv			\dashv	\dashv	\neg	\Box	П	П	П	\Box	\top	\dashv	_
Recirculación																		T		\dashv	\exists			\exists	\neg						\Box		\neg	
Industria naval																																		
Eliminación de lodos		_						_					Ш			_	\perp	4	_	4	_						\square	\square			Ш	\perp	_	
Procesamiento de lodos	_					_	_	-					Ш			\dashv	_	_	4	4	4		-	_	\dashv	\square	\square	\sqcup	\square	\square	\square	\dashv	\dashv	
Cañones de nieve	H	-				_	-	-				_						4	-	+	\dashv		-	\dashv	\dashv	\vdash	\vdash	$\vdash \vdash$	\square	\square	\square	\dashv	\dashv	—
Tecnología para piscinas	-	-	\vdash			+	+	+		\vdash			\vdash		\dashv	\dashv	+	+	+	+	\dashv	-		\dashv	\dashv		\vdash	\vdash	\vdash	Н	$\vdash \vdash$	\dashv	\dashv	—
Mantenimiento en suspensión Circulación de aceite térmico	-	+	\vdash							Н			Н			+	+	+	+	+	\dashv	-		\dashv	\dashv	\dashv	\dashv	H	Н	Н	\vdash	+	+	—
Ingeniería de procesos		\vdash	\vdash			╬		+=		Н		Т								•											\vdash	+	+	_
Sistemas de recuperación de calor						T	<u> </u>	1	Ť			_	\exists		_	_	+	+	Τ.	\dagger	7			-	$\overline{}$			Ē	H	\exists	\Box	\top	\dagger	
Calefacción por agua caliente										П																		П	П	П		\Box	\top	_
Plantas de lavado																		I																
Tratamiento de aguas			Ш							Ш			Ш					1	1	_	\prod			\prod	_[\square		Ш	Ш	Ш	Ш	\perp		
Extracción de agua		_				_	-	-	_	Ц			Ш			_	4	4	4	4	4			_	_	\square	الر	Ш	Ш	Ш	\square	\dashv	\dashv	_
Abastecimiento de agua		1				- 1	1	1	1						- 1	- 1	- 1	- 1	- 1					- 1		. 1	, !		1 1		ı l	.		
Industria azucarera	-	+							-	Н						_		_	_	=				_			щ	\vdash	\vdash	\vdash	\vdash	\dashv	\neg	_

Resumen de aplicaciones

	Válvulas de globo NUCA	ZYNB/ZYN	ZXNB	ZXNVB	BOA-CVE C/CS/W/IMS/EKB/IMS EKB	BOA-CVE H	ВОА-СVР Н		BOA-Control /BOA-Control IMS	BOA-Control PIC	BOA-Control DPR		CONDA-VLC		CONDA-VRC		CONDA-VSM	BOAVENT-AVF	OAVENT-SVF	BOAVENT-SIF	BOAVENT-SVA		SISTO-VentNA	SISTO-KRVNA		ZJSVA/ZXSVA					
Riegos por aspersión	<u></u>	L	Ш	Z.	i		_	EN-	4	\perp	\perp	ĘN.		EN-			_ 2	_	-			res			/EN	\square	\dashv	_	\perp	\perp	\bot
Minería	aplicaciones nucleares	⊬		DIN/FN	-	\vdash	-	DIN/EN	\dashv	+	+	DIN/EN	Н	DIN/EN	_ =	DIN/EN	ourga v Henado	_	+	\vdash		aplicaciones nucleares	_		DIN/EN	$\vdash\vdash$	\dashv	\dashv	+	+	+
Regadíos Industria química		\vdash							\dashv	+	+	Ø	Н	o -			_ >	<u></u>	+	\vdash		s nu	_	-		$\vdash \vdash$	\dashv	\dashv	+	+	+
Aumento de presión		\vdash		Válvulas de control conforme a		-	-	equilibrado hidráulico conforme a	\dashv	+	+	conforme	Н	conforme	-	presión contorme a		<u> </u>	+	+		one	_		conforme a	\vdash	\dashv	+	+	+	+
Eliminaciones				onfo		Н	\exists	onfe	1	\top	\top	onfe	П	onfe		ont			\top	\vdash		acic			onfe	\Box	\dashv	\dashv	\top	\top	+
Achiques/drenajes						П		00	\exists	\top		o le	П			S L	Válvulas de	3				aplic			da c	\Box		\Box	\top	\top	\top
Instalaciones descascarilladoras	בש			ntr				aulic				nivel		presión		esiç	<u> </u>					ıra			parada				\Box		
Instalaciones descascarilladoras Sistemas urbanos de calefacción Transporte de sólidos Sistemas contra incendios Tuberías de gas Acumuladores de gas Mantenimiento del nivel freático	0			٥				idré		\perp		de				e pr	Š	2				Válvulas de purga para			y p			\Box	\perp	\perp	\perp
Transporte de sólidos		_		D ve				오	4	\perp	_	reguladoras	Ш	as de		o de			_	_		urg			arranque y	Ш	\dashv	4	4	4	\perp
Sistemas contra incendios	<u>ရ</u> က	_		_ = =	_	Ш		orac	_	\perp	_	llade	Ш	Válvulas reductoras	_	Válvulas de mantenimiento	4		4	-		le pı			anc	\square	\dashv	\dashv	\perp	\perp	\perp
Tuberías de gas	as —	-		_ 	_	\vdash	-		\dashv	+	+	egu	Ш	gr		<u>=</u>		\vdash	+	-		as d			arı	$\vdash \vdash$	_	\dashv	+	+	+
Acumuladores de gas Mantenimiento del nivel freático		-		-	\vdash	\vdash			\dashv	+	+	as r		s re	-	ıte.			+	\vdash		Vul			s de	$\vdash\vdash$	\dashv	\dashv	+	+	+
Abastecimiento de agua doméstica	<u> </u>	\vdash		-		\vdash	-	globo y de		_		Válvulas	Н	ula		mai						Vál			Válvulas reguladoras	\vdash	\dashv	\dashv	+	+	+
Sistemas de calefacción, climatización y		\vdash				\vdash		oq	\dashv		+	Vá		۷á۱	-	ge	-	-	+-	Ι-	-				ılad	\vdash	\dashv	+	+	+	+
ventilación					-										-	rlas									egr						
Homogeneización								de					П		-	áΙνι									las ı	П		\Box		\top	
Sistemas de recirculación industrial								ulas							-	>									Ivu						
Centrales nucleares								Válvulas de		\perp			Ш	_											Š			\Box	\perp	\perp	
Alimentación de calderas					_		_	_	4	\perp	\perp		Ш	_				L	1	_						ш	_	4	4	4	
Recirculación de calderas	_	-		_	_			-	4	+	+		Ш	-	_	-	_	_	+	╀	_		_	_			\dashv	\dashv	+	+	+
Plantas depuradoras	-	⊬		-	L			-	_				Н	-	-	-	_		+	╀	H		_	\vdash		$\vdash\vdash$	\dashv	\dashv	+	+	+
Instalaciones de climatización Transporte de condensados	-	╁		-	F		-	-			-		Н	-	-	-	_	\vdash	+	╁	-		_	\vdash		$\vdash \vdash$	\dashv	+	+	+	+
Centrales eléctricas convencionales	-	\vdash		+	\vdash	\vdash	-	-	\dashv	+	+		Н	-	-	-	-	\vdash	+	╁	-		_			Н	\dashv	+	+	+	+
Circuitos de refrigeración				-				-					Н	-	-	H			+	+				\vdash			\dashv	\dashv	+	+	+
Sistemas de pintura					┢	⊢	-1		_	_	+-		Н	-		-			+	+						П	\dashv	\dashv	+	+	+
Industrias alimentaria y de bebidas										\neg	T		П						T	T								T	\top	\top	
Desalación de agua de mar/ósmosis										\top			П																\top		
inversa										\bot	\perp		Ш						\perp	\perp						Ш	_	\perp	\perp	4	\perp
Mezclas		_			_			_		\perp	\perp		Ш	_				_	_								_	_	\dashv	4	\bot
Industria papelera y de celulosa	_	₩	\vdash	_	_		_	-	_	+	+		Ш	-	_	-		L	+	╀	_		_			\vdash	_	_	+	+	_
Industria petroquímica	_	-		-	_		_	_	-	+	+	-	Ш	-	_	-	_	\vdash	+	\vdash	-					\vdash	-	+	+	+	_
Industria farmacéutica Tuberías y depósitos	-	╁		-	-	\vdash	-	-	+	+	+		Н	-	-	-	-	\vdash	+	╁	-		_	_		\vdash	\dashv	\dashv	+	+	+
Refinerías			+			\vdash			\dashv	+	+		\vdash					\vdash	+	+				\vdash		\vdash	\dashv	+	+	+	+
Desulfuración de gases de combustión									\dashv	+			Н	-	-								_	-			\dashv	\dashv	+	+	+
Recogida de agua de Iluvia		T	\sqcap			\Box			\dashv	\top	\top		П						\top	T						\sqcap	\dashv	\dashv	\top	\top	\top
Recirculación																															
Industria naval			Ш						\Box	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\Box															Ш		$oldsymbol{\bot}$	\perp	\perp	\bot
Eliminación de lodos			\sqcup			Ш			4	\perp	\perp		Ш						\perp							Ш	_	4	\perp	4	\perp
Procesamiento de lodos		\vdash	\vdash		_		_		4	+	+		Ш					_	+	-			_	\square		$\vdash \vdash$	_	_	\dashv	+	+
Cañones de nieve		\vdash	\vdash		-		$-\parallel$	-	4	+	+		Н					-	+	\vdash			_	\vdash		$\vdash \vdash$	\dashv	\dashv	+	+	+
Tecnología para piscinas Mantenimiento en suspensión		\vdash	\vdash		-	\vdash	$-\parallel$	-	\dashv	+	+		Н		-[-		-	+	+	-		_	\vdash		$\vdash\vdash$	\dashv	\dashv	+	+	+
Circulación de aceite térmico		\vdash	\vdash		-	\vdash	\dashv		\dashv	+	+		H					-	+	+	\vdash		_	\vdash		\vdash	\dashv	+	+	+	+
Ingeniería de procesos		\vdash	\vdash						\dashv	+	+		Н					┞	+	+	\vdash			H			\dashv	+	+	+	+
Sistemas de recuperación de calor		\vdash	\vdash										Н							\dagger				Н			\dashv	\dashv	+	+	+
Calefacción por agua caliente		\vdash	\sqcap					-	-				П						\top					П		\Box	\dashv	\dashv	+	+	+
Plantas de lavado													П															\Box		_	
Tratamiento de agua																															
Extracción de agua		1	L T						T				1 1								1					ıΤ		. T			
Abastasiasianta da agua		-	\vdash						-	\rightarrow	-	-	ш			-		_	_	+-	-		_	\vdash		\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	-
Abastecimiento de agua Industria azucarera									•								•			•	•						\exists	\dashv	\mp	\mp	

•																																				
						KDS	AKDS				009-0		-900	009-		-300	ا	ָּן נ	2	Ė																S
		COBKA-SGP/SGO	_	•	T 40	STAAL 40 AKD/AKDS	STAAL 100 AKD/AKDS	GS-A			ECOLINE GIBO 150-600	ECOLINE GTB 800	ECOLINE GTC 150-600	ECOLINE GTF 150-600	ECOLINE GTF 800	ECOLINE GTV 150-300	SICCA 150-600 GTC		SICCA 900-3600 GTC	2500 6											BOA-RPL/RPL F-F				NORI 40 RXL/RXS	NORI 160 RXL/RXS
		(A-5G	COBRA-SMP	ECOLINE SP	ECOLINE GT 40	L 40 /	\L 100	AKG-A/AKGS-A			INE G	INE G	INE G	INE G	INE G	NE G	150	000	900-	-061 4			V-BD		HERA-BDS	HERA-BHT	HS-∖				.RPL/R	·RFV	RVK	ج	40 R	160 R
		200	COBF	ECOL	ECOL	STA₽	STA	AKG.	ZTS		ECOL	ECOL	ECOL	ECOL	ECOL	ECOL		מיני		22	Į.		HERA-BD		HER/	HER/	HERA-SH		NGS		BOA	BOA-RFV	BOA-RVK	BOA-R	NOR	NOR
Riegos por aspersión	ĘN.									ME											res	Z	_	ME	L			od.		Ę.		L				
Minería Regadíos	de compuerta conforme a DIN/EN									ANSI/ASME	H		-	-	-	+	+	+	_	_	aplicaciones nucleares			\ASI	╚	-		cuer	_	NIC	_	H	⊬	_		
	е	-		_		П	_	Н		ANS	H	╁	\vdash	\vdash	╁	╁	+	+	_	-	nu s	_ a		ANS		\vdash	\vdash	del		е э	-	⊢	\vdash			
Aumento de presión	E O					-	-	-	_	e a	Н	H	H	t	\vdash	\dagger	\dagger	+			one	- 2		e a	F	\vdash		ión	Ē	orm		\vdash	\vdash	-	-	_
Eliminaciones	onf									or m	Г	Т	Т		T	T	T	T			Cac	9		, i	Г	T		ores	П	onf		Т	П			
Achiques/drenajes	tac									onfc											abii	- 6		onfc				bre		ón c						
Instalaciones descascarilladoras	one	_				므	_			ta c	L	L	L		L	-	-	4	_		para	<u>-</u>	_	Ja c	_	-	-	a so	_	enci		L	╙	L	▝	
Sistemas urbanos de calefacción	mo	4		_			_	_		ner	H	H	H	-	╀	+	+	+	_	_	g D	- 5	_	loti.	Н			ontr	_	ret	_	⊬	⊬	⊢	\vdash	<u> </u>
Transporte de sólidos Sistemas contra incendios	de c	\dashv		_			_	_		duc	H	\vdash	\vdash		╀	+	+	+	-	-	_ ner	- 0		duil	-	F	-) U	H	e de	\vdash	⊬	┈	\vdash	_	_
Tuberías de gas	ılas	\dashv		-		H		\vdash		Válvulas de compuerta conforme a		\vdash	+	+	+	+	+				valvulas de compuerta	Válvitlas de citillotina conforme a DIN/EN	5	Válvulas de quillotina conforme a ANSI/ASME	-	+	\vdash	protección contra sobrepresión del cuerpo		Válvulas de retención conforme a DIN/EN		\vdash	\vdash			\vdash
Acumuladores de gas	Válvulas	\exists						Н		as c		\vdash	\vdash		\dagger	\dagger	†	Ť	+		Se C	/é/		ılas		\vdash	\vdash	rote		Válv		\vdash	\vdash			\vdash
Mantenimiento del nivel freático	>	I								Ivu		İ	İ		I	İ	İ	╛			as c			/álvu				le pi								
Abastecimiento de agua doméstica		╝								Ş														_				as o								
Sistemas de calefacción, climatización y ventilación																				77.7	^							Válvulas de								
Homogeneización	-	-									H	\vdash	\vdash		\vdash	+	+	+	\dashv	-		-			-	\vdash		50	H			\vdash	\vdash			
Sistemas de recirculación industrial	-	7													\vdash			+		-					-							\vdash	\vdash			\vdash
Centrales nucleares											Г	T					1	\top							r	T						Т	\vdash			
Alimentación de calderas								回			Г	Т	Т												Г											
Recirculación de calderas																																				
Plantas depuradoras											L														L							L	L	L	L	
Instalaciones de climatización	1]									L	L	L		L	_	_	_	_	_			L		L	_	_		_			L	L		L	_
Transporte de condensados	_	_				╚	_	_		_	L						-		4	_	_	4	L		_	-	_		L		_	⊬	⊢			_
Centrales eléctricas convencionales Circuitos de refrigeración	-	-					_		-	-	H	\vdash	⊬		╀	+	╀		-	_		-			L	-	-		-		Н	⊬	\vdash	⊬	-	
Sistemas de pintura	- -	-	-	-				_		-	H	┢	╁	▐▔	╁	+	+	+	+	-	\vdash	-	\vdash		H	\vdash	+	-	H		-	╁	┢	\vdash	-	-
Industrias alimentaria y de bebidas		┪						\vdash		-			\vdash		\vdash	+	$^{+}$	+	\dashv	-		-			H	\vdash			Н			\vdash	\vdash			\vdash
Desalación de agua de mar/ósmosis		T								-	Г				\vdash	T									Г			-				T	T			
inversa											L	L	L		L																	L	L			
Mezclas											L	L	L		L		\perp	4					_						_		<u> </u>	L	L	L	L	<u> </u>
Industria papelera y de celulosa	_	_				H	-	님			Ŀ	_			-		+	+	-		_	_	Ŀ		-				E	-	_	⊢	<u> </u>	<u> </u>	╚	-
Industria petroquímica Industria farmacéutica	-	-									-	-	-		-		#		-		-	-	-	-	-	-	-		-	-	\vdash	⊢	\vdash	_		╚
Tuberías y depósitos	-	-									H	╁				H	╬		-			-	-	-	H	\vdash			-			┢	┢			\vdash
Refinerías	-	7									Н		┢	Ι-	╫				_ -						-							\vdash	\vdash			\vdash
Desulfuración de gases de combustión											Г	T	T		\top		\top	\top											Г			Т	T		m	
Recogida de agua de lluvia																																				
Recirculación											L	L			L																	L	\perp			
Industria naval	_										L	L	L		┡	_	_	_	_	_					_				L		_	╙	<u> </u>	L		
Eliminación de lodos	-	_								-	H	-	-		-	-	+	-	-	_	-	_	H	_	_				_	-	_	⊬	⊬	L	L	<u> </u>
Procesamiento de lodos Cañones de nieve	-	-		_			_				H	\vdash	\vdash	\vdash	╁	+	+	+	\dashv	-		-		-	H	-			H	-		⊬	⊬	⊬	⊬	\vdash
Tecnología para piscinas		٦			-		-	-		-	H		╁	H	╁	+	+	+		-		-			-				-			\vdash	\vdash			\vdash
Mantenimiento en suspensión		\exists						\vdash						t	+	\dagger	+	+	+							\dagger						\vdash	\vdash			\vdash
Circulación de aceite térmico		Ţ										İ																								
Ingeniería de procesos																													■							
Sistemas de recuperación de calor		_]				\bigsqcup		\square			L	L	L	L	L	\perp	\perp	4	4				L		L		L				_	Ļ	L	L	L	L
Calefacción por agua caliente		4		┖							_	_	1	_	\vdash	+	+	+	_	_		-[]	L		_	-	<u> </u>		_		_	\vdash	-		_	<u> </u>
Plantas de lavado Tratamiento de agua			_		\vdash	\vdash		\vdash	_		-	\vdash	\vdash		\vdash	+	+	+	+	-[]		-			H	\vdash	H		_			\vdash	\vdash	\vdash	-	\vdash
Extracción de agua	<u> </u>	=	-		-	H	_	\vdash			-	\vdash	\vdash		+	+	+	+	+	-[-		_	+			-			\vdash	\vdash	\vdash	-	-
Abastecimiento de agua								\vdash				\vdash	+		+	+	+	+	+							\vdash	\vdash						\vdash			\vdash
Industria azucarera		\exists	Ť	Ť									T	Ī	\dagger	\dagger	\dagger	\top	\top							T					Ė	Ť	\vdash			
				_	_							_	_																						_	_

Resumen de aplicaciones

Riegos praspersión Montrais Regadios G Regad			RGS	BOACHEM-RXA		ECOLINE PTF 150-600	ECOLINE PTF 800	SICCA 150-4500 PCF		Válvulas de retención NUCA	RJN	RYN		ECOLINE WT/WTI	STAAL 40 AKK/AKKS	STAAL 100 AKK/AKKS	AKR/AKRS	ZRS	SISTO-RSK/RSKS	SERIE 2000		ECOLINE SCC 150-600	ECOLINE SCF 150-600	ECOLINE SCF 800	ECOLINE SCV 150-300	SICCA 150-600 SCC	SICCA 900-3600 SCC		SISTO-RSKNA	ZRN		COBRA-TDC01/03					
Aumento de presión Firmancineles Instalaciones decaderación Transporte de calefacción Abattecimiento del nivel fresito Abattecimiento del		ĘN			ME				res				ËN								ME							res			ĒΝ		_	\dashv	\perp	4	_
Aumento de presión Firmancineles Instalaciones decaderación Transporte de calefacción Abattecimiento del nivel fresito Abattecimiento del			Ľ	┝	I/AS	L		H	clea					_	L	L	-	-	-	-	I/AS	_	-	H	H	L		clea			N D		\dashv	+	+	+	—
Authention de préson de la la la la la la la la la la la la la		Ф			ANS	H			s nu				σ	-						_	ANS	-	-					s nu				-	+	+	+	+	_
Transporte de solidedis. Sistemas contra incentions of the station of the statio		orm	_	┌	e a /	H			one	_			orm	Н	Ē	Ē	_	┌	┌	Ι-	e a	Н				Ē		one			orm		\top	+	+	+	_
Transporte de solidos Sistemas contra incendios Acumuladores de gasi Mantenimiento del nevir frestito Abastecimiento del nevir frestito Abaste	Eliminaciones	onf			or m				caci				onf								orm.							caci			onf			\perp	士	土	
Transporte de solidedis. Sistemas contra incentions of the station of the statio	· · · · · ·	ón c			onfc				apli				tac								onfc							apli			te c				\perp	\perp	
Transporte de solidedis. Sistemas contra incentions of the station of the statio		enci	┖		o uç	_			ara				lape	L	=			_	_	_		_						ara			ilan	4	\dashv	\dashv	\perp	\downarrow	_
Mantenimiento del nivel freatico Abastecimiento de agua de morestica Sistemas de calefacción, climatización y vertiliación Momogeneización Sistemas de recirculación industrial Centrales nucleares Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales eléctricas convencionales Circultos de refrigeración Sistemas de pintura Industria alimentaria y de bebidas Desalación de agua de mariósmosis Inversa Mezclas Industria pertequímica Industria pertequímica Industria pertequímica Industria farmacéutica Truberias y depósitos Refinerias Desuffuración de gases de combustón Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Cahones de nieve Tecnologia para pisínas Mantenimiento en suspensión Circulación de celete térnico Ingeniería de processo Sistemas de recuperación de calor Tratamiento de agua Estracción de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de de gua		rete		H	ncic	_		\vdash	n p				o ec		L	L		-	-	-	ape	H	H					ta p			3 050	\dashv	\dashv	+	+	+	—
Mantenimiento del nivel freatico Abastecimiento de agua de morestica Sistemas de calefacción, climatización y vertiliación Momogeneización Sistemas de recirculación industrial Centrales nucleares Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales eléctricas convencionales Circultos de refrigeración Sistemas de pintura Industria alimentaria y de bebidas Desalación de agua de mariósmosis Inversa Mezclas Industria pertequímica Industria pertequímica Industria pertequímica Industria farmacéutica Truberias y depósitos Refinerias Desuffuración de gases de combustón Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Cahones de nieve Tecnologia para pisínas Mantenimiento en suspensión Circulación de celete térnico Ingeniería de processo Sistemas de recuperación de calor Tratamiento de agua Estracción de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de de gua		s de		H	rete	H		\vdash	ncic	_				H				\vdash		+	le cl	H	H					ape			peta	\dashv	\dashv	+	+	+	—
Mantenimiento del nivel freatico Abastecimiento de agua de morestica Sistemas de calefacción, climatización y vertiliación Momogeneización Sistemas de recirculación industrial Centrales nucleares Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales eléctricas convencionales Circultos de refrigeración Sistemas de pintura Industria alimentaria y de bebidas Desalación de agua de mariósmosis Inversa Mezclas Industria pertequímica Industria pertequímica Industria pertequímica Industria farmacéutica Truberias y depósitos Refinerias Desuffuración de gases de combustón Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Cahones de nieve Tecnologia para pisínas Mantenimiento en suspensión Circulación de celete térnico Ingeniería de processo Sistemas de recuperación de calor Tratamiento de agua Estracción de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de de gua		/ula			de	Н		Н	rete				enci	Н				\vdash	Ι-	\vdash	ón c	Н						le cl		\vdash	cla		\dashv	+	+	+	—
Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales electricas corvorencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria framaceutica Tuberias y depositos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Industria naval Industria naval Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria framaceutica Industria framaceutica Industria papelera y de celulos Industria pape		Vál			ulas			П					ret					İ			enci							ón c			n de		_			_†	_
Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales electricas corvorencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria framaceutica Tuberias y depositos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Industria naval Industria naval Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria framaceutica Industria framaceutica Industria papelera y de celulos Industria pape					/álv				ulas				s de								rete							enci			ıcióı			\Box	\perp	I	_
Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales electricas corvorencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria framaceutica Tuberias y depositos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Industria naval Industria naval Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria framaceutica Industria framaceutica Industria papelera y de celulos Industria pape				L		L			/álv				vula	▝				L	L	_		L						rete			eter		_	4	\perp	\perp	_
Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales electricas corvorencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria framaceutica Tuberias y depositos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Industria naval Industria naval Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria framaceutica Industria framaceutica Industria papelera y de celulos Industria pape													Váľ								ıula							s de			de r						
Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales electricas corvorencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria framaceutica Tuberias y depositos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Industria naval Industria naval Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria framaceutica Industria framaceutica Industria papelera y de celulos Industria pape						H		Н						H							Vál							/ula			ılas		\dashv	+	+	+	_
Alimentación de calderas Recirculación de calderas Plantas depuradoras Instalaciones de climatización Transporte de condensados Centrales electricas corvorencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria framaceutica Tuberias y depositos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Industria naval Industria naval Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria papelera y de celulos Industria framaceutica Industria framaceutica Industria papelera y de celulos Industria pape				Г																								Vál			álvu		\top	\top	\top	\top	_
Recirculación de calderas Plantas depuradoras Instalaciones de cimatización Transporte de condensados Centrales eléctricas convencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria pepelera y de celulosa Industria petroquímica Industria petroqu																															>		\Box	\Box	\perp	\perp	
Plantas depuradoras Instalacionse de climatización Transporte de condensados Centrales eléctricas convencionales Circutos de refrigeración Sistemas de pintura Industria alimentaria y de bebidas Desalación de agua de mar/osmosis inversa Mexclas Industria papelera y de celulosa Industria papelera y de celulosa Refinerías Desulfuración de gases de combustión Recogida de agua de Ilivia Recirculación Industria naval Eliminación de lodos Cañones de nieve Tecnologia para piscinas Mantenimiento en suspensión Circulación de agua Extracción de agua								-									⊢	⊢				•				-	_						_	\dashv	\perp	4	_
Instalaciones de climatización Transporte de condensados Centrales electricas convencionales Circutios de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria petroquímica Industria petroquímica Industria petroquímica Industria petroquímica Industria petroquímica Industria petroquímica Industria farmacéutica Tuberías y depósitos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Gañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de acalor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Extracción de agua Extracción de agua Extracción de agua Extracción de agua Extracción de agua Abastecimiento de agua			ш			_		Ш						_	H	L	_	-		-	-	_				Ľ	Ľ						+	+	+	+	_
Transporte de condensados Centrales eléctricas convencionales Circuitos de refrigeración Sistemas de pintura Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria papelera y de celulosa Industria petroquímica Industria petroquímica Industria petroquímica Industria fermacéutica Tuberías y depósitos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Procesamiento de lodos Cañones de nieve Tecnologia para piscinas Mantenimiento en suspensión Circulación de agua Extracción de agua Extracción de agua Abastecimiento de agua Extracción de agua Abastecimiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua Extracción de agua Abastecimiento de agua	· · · · · · · · · · · · · · · · · · ·			┢		-		\vdash										┢				-	-								-	\dashv	+	+	+	+	_
Circuitos de refrigeración Sistemas de pintura Industrias alimentaría y de bebidas Desalación de agua de mar/ósmosis Inversa Mezclas Industria papelera y de celulosa Industria farmacéutica Tuberías y depósitos Refinerías Desulfuración de gase de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua								Н						F					Ι-	Ι-												\dashv	\dashv	+	+	十	_
Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria paelera y de celulosa Industria petroquímica Industria farmacéutica Industria farmacéutica Industria farmacéutica Refinerias Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de lavado Tratamiento de agua Extracción por agua caliente Plantas de lavado Tratamiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua																																		\perp	士	土	
Industrias alimentaria y de bebidas Desalación de agua de mar/ósmosis inversa Mezclas Industria papelera y de celulosa Industria partorquímica Industria farmacéutica Tuberías y depósitos Refinerias Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua	Circuitos de refrigeración																																\Box	\Box	\perp	\perp	
Desalación de agua de mar/ósmosis inversa Mezclas Mezclas Industria papelera y de celulosa Industria farmacéutica Industria farmacéutica Tuberías y depósitos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua	· · · · · · · · · · · · · · · · · · ·			L		_		Ш						_				_	_		-	_	_									_	\dashv	\dashv	\perp	\perp	_
Industria papelera y de celulosa Industria petroquimica Industria farmacéutica Tuberías y depósitos Refinerias Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Extracción de agua Extracción de agua Abastecimiento de agua	-		L	⊬		L		\vdash		_				_			_	┝	┝	\vdash		H	_	H	H					-		\dashv	\dashv	+	+	+	—
Industria papelera y de celulosa Industria paretroquímica Industria farmacéutica Tuberías y depósitos Refinerias Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua						•																															
Industria petroquímica Industria farmacéutica Tuberías y depósitos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua Abastecimiento de agua	Mezclas					Г																											\dashv	\top	\top	\top	
Industria farmacéutica Tuberías y depósitos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvía Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Extracción de agua Extracción de agua Abastecimiento de agua	Industria papelera y de celulosa		_	_	_			-												-						_	_						\Box	\Box	\perp	\perp	_
Tuberías y depósitos Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua Extracción de agua Abastecimiento de agua						L																•											_	\perp	\perp	\perp	_
Refinerías Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua	-			H		L	_	님						L				-	-			L	_	L		_						_	+	+	+	+	_
Desulfuración de gases de combustión Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua				\vdash		H	_	-						H				\vdash	\vdash	-		_	-	_	_	_					ŀ	-	\dashv	+	+	+	—
Recogida de agua de lluvia Recirculación Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua Abastecimiento de agua				H		H	_							H								Ē	-	-	-	Ē	_						\dashv	+	+	+	—
Industria naval Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua																																		\perp		I	
Eliminación de lodos Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua																																		\perp	\perp	\perp	
Procesamiento de lodos Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua						_								_								_											\dashv	\dashv	\perp	\perp	_
Cañones de nieve Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua						_		\square						H						-		_											+	+	+	+	_
Tecnología para piscinas Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua				┢		-		\vdash						-				┢	-			-	-								-	\dashv	+	+	+	+	_
Mantenimiento en suspensión Circulación de aceite térmico Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua					-	H		Н		_				H	-	-	-	\vdash	\vdash			H										\dashv	\dashv	+	+	+	_
Ingeniería de procesos Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua				T				П			П				T			\vdash	T				Т	Т	Т					П			\dashv	\top	\top	十	_
Sistemas de recuperación de calor Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua																				_						_									I	I	_
Calefacción por agua caliente Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua						L		-			Щ			Ĺ	\vdash											_	_			Ш		\Box	_[\bot	\perp	\perp	_
Plantas de lavado Tratamiento de agua Extracción de agua Abastecimiento de agua				\vdash		<u> </u>		-		_				<u> </u>						<u> </u>		_				-							\dashv	\dashv	+	\perp	_
Tratamiento de agua Extracción de agua Abastecimiento de agua			_	\vdash		H	\vdash			_	\vdash				\vdash	\vdash	\vdash	\vdash	\vdash			_	\vdash	\vdash	\vdash					\vdash		\dashv	\dashv	+	+	+	_
Extracción de agua Abastecimiento de agua			\vdash	\vdash			\vdash	Н		_	Н			-	\vdash	\vdash	\vdash	\vdash				-	\vdash	\vdash	\vdash	\vdash	\vdash			Н			+	+	+	+	_
Abastecimiento de agua				\vdash		F					H				\vdash	\vdash		\vdash	f	Ī			\vdash							H		_	+	+	+	+	_
Industria azucarera																																	\top	\top	丁	\top	_
	Industria azucarera																																\perp	\perp	\perp	\perp	_

		s.	NORI 40 FSL/FSS	BOACHEM-FSA		ECOLINE FYC 150-600	ECOLINE FYF 800		BOAX-CBV13	BOAX-S/SF	X-B	ISORIA 10/16	ISORIA 20/25	МАММОПТН			APORIS-DEB02	DANAÏS 150	DANAÏS MTII	DANAÏS CRYO	DANAIS CRYO AIR		TRIODIS 150	IRIODIS 300	000 510	415	CLOSSIA		rıs		MP-CI/MP-II	PROFIN VT1		ECOLINE BLT 150-300	PROFIN VT2L	
		BOA-S	NOR	30 A		0	0		30 A	30 A	BOAX-B	SOR	SOR	MAN	ΣE		γPOI	AN	AN	AN	AN		N N	2 2	2	Š	Š		DUALIS		MP-C	ROF		Ö	RO	
Riegos por aspersión		_	_	_		_	_				_	Ē	_	_	_			_	_	_							_				ī			_	_	Т
Minería	DINVEN				Filtros conforme a ANSI/ASME	\vdash		centrado			_					de doble excentricidad	\vdash				7	de triple excentricidad				-are	- :	SCIÓ.		Válvulas de bola de una pieza	\neg		bola de dos piezas	\rightarrow		\vdash
Regadíos	a DI	T	\neg		SI/A			ent								ıtric						ĭ	\top	\top			_	eter		na	\neg		os b	\neg		T
					A			eje o								Kcer						cer				es n		>		e u			e dc			
Aumento de presión	Filtros conforme				e a			de e								е е						e 6				0		osa		la o			a d			
Eliminaciones	COU				orm			sa (lobl						d L				_ ac	_	arib		oq						L
Achiques/drenajes	00 0				onf			mariposa								de d						ge t				ab		Ĕ		g			g			L
Instalaciones descascarilladoras	븚				OS C			ma		_		П						_		_			_	_		<u>a</u>	_	s de	_	ulas		_	Válvulas	_		L
Sistemas urbanos de calefacción		_		_	iltro			ge								ipo		П				od	_	4		<u>0</u>	_	ada	_	/álv			áΙνι	\dashv		L
Transporte de sólidos	_	_	_	_	ш	_		Válvulas de		_		Щ	Щ	Щ		mariposa	\square	_	_	_	_[mariposa	\perp	\perp		valvulas de mariposa para aplicaciones nucleares	_	Válvulas combinadas de mariposa y retención	_		_		>	\dashv	L.	1
Sistemas contra incendios	_	_	_	_		_		álvu		_		፱	Щ	Щ	Щ	de	\square	_	_	_	_].	ge	\perp	\perp		Jari	_[E O	_		_			\dashv		1
Tuberías de gas		_	_	_		_	\square	>	_	_		Щ		\vdash		Válvulas	\square	_	_	\rightarrow	₽.	Válvulas de	_	_		<u>e</u>	4	as c	_		_	\square		_	_	1
Acumuladores de gas	-	_	-	_						_		Ш				N		_	_		4	<u> </u>		Ш	4	as d	4	Ŋ N	_	-	-	_	-	\dashv	\vdash	╀
Mantenimiento del nivel freático	-	4	+	\dashv		\vdash	\vdash				_	Н	\vdash	H	\vdash	V	$\vdash \vdash$	\dashv	\dashv	-	_	>	+	+			_	۷áا	\dashv					\dashv	_	\vdash
Abastecimiento de agua doméstica	-	\dashv	\dashv	\dashv		\vdash	$\vdash \vdash$					Н	\vdash	H	\vdash		$\vdash \vdash$	\dashv	\dashv	\dashv	-	-	+	+		\ 	-		\dashv				-	\dashv		\vdash
Sistemas de calefacción, climatización y ventilación																																				
Homogeneización		\dashv	\dashv	\dashv						\dashv										\dashv			\dashv	+	-		-	-	\dashv	-	\dashv	-	-	\dashv		\vdash
Sistemas de recirculación industrial		\dashv	\dashv	\dashv						\dashv		П								\dashv							-	-	\dashv	-			-	\dashv		\vdash
Centrales nucleares		\dashv		\dashv						\dashv					_			Ħ				-	_			h	1	-	\exists	-	\exists	\exists	-	\dashv		\vdash
Alimentación de calderas				\dashv		П	П			\dashv								_	_							ľ	-	-	\exists	-	\dashv	\neg		\dashv		t
Recirculación de calderas	_		\rightarrow	\neg						\neg								\neg					\top	\top				-			\neg			\dashv		T
Plantas depuradoras		\exists																																一		T
Instalaciones de climatización		T	\neg																															\neg		T
Transporte de condensados																																		\neg		Г
Centrales eléctricas convencionales							団																													Г
Circuitos de refrigeración																																		\neg		Г
Sistemas de pintura																																				
Industrias alimentaria y de bebidas																																				
Desalación de agua de mar/ósmosis																																		П		Γ
inversa	_		_							_								_		_	4	_	_	\perp		L		_	4	_	_			_		L
Mezclas	-	4	_	_						_		Ш								_	4	-	_	_	4	L	4	-	4	-	_	_	-	\dashv		╄
Industria papelera y de celulosa			_							_		Ш							Ц	_	_	_	_		_	H	4	-	4	-	_		-	_		╀
Industria petroquímica	-						닏			\dashv					_					-	-	-		1	4	H	4	-	\dashv	-	\dashv		-		\vdash	╀
Industria farmacéutica	-	\dashv	\dashv	\dashv		L				\dashv			_	L	Ш					_		-	_	_		H	4	-	\dashv	-	\dashv		-	-	_	╀
Tuberías y depósitos	-	\dashv	\dashv	\dashv		日				\dashv												_	_			\vdash	+	-	\dashv	-	\dashv	_	-	-		⊣
Refinerías Desulfuración de gases de combustión	-	\dashv	-	\dashv		Н	H			\dashv			_							-	-	-	- '	-		\vdash	-	-	\dashv	-	\dashv	-	-		\vdash	⊣
Recogida de agua de Iluvia	-	\dashv	\dashv	\dashv										-				\dashv		\dashv	-	-	+	+	+	\vdash	+	-	\dashv	-			-	\dashv		⊣
Recirculación		\dashv	\dashv	\dashv						-	-							\dashv		\dashv		-	\dashv	+	+	H	\dashv	-	\dashv	-		-	-	\dashv	_	\vdash
Industria naval				\dashv						\dashv												-				H	+		\dashv		=	-		\dashv		\vdash
Eliminación de lodos		_	_	\dashv						\dashv			-	-						-	-			- -	-	H	+		\dashv		\dashv	-		\dashv		\vdash
Procesamiento de lodos		\dashv	_	\neg																_			\dashv	\top					\exists	-	\dashv	\neg		\dashv		\vdash
Cañones de nieve		\dashv		\dashv		Н	\vdash			\dashv		Н		П				\dashv	\dashv	\dashv			\top	+							\dashv			\dashv		T
Tecnología para piscinas		\dashv	-	\dashv			П					П					-			\dashv			\top	\top							\dashv			\rightarrow	Ī	\top
Mantenimiento en suspensión		\dashv		\neg		П	П			\neg		П								\dashv			\top	\top							\dashv	\neg		\dashv	Г	\vdash
Circulación de aceite térmico																				\neg											\neg	\neg			Г	Г
Ingeniería de procesos																		_	$\overline{}$				-													
Sistemas de recuperación de calor																							\Box											\Box		
Calefacción por agua caliente																																				Ĺ
Plantas de lavado														\Box						Ţ				Ţ										\rightarrow		Ĺ
Tratamiento de agua		[[]									\Box												\Box			[L
Extracción de agua												旦		$oxed{\Box}$			Ш						\perp	\perp								\square		\perp		\perp
Abastecimiento de agua														ш																						
Industria azucarera				_		-	-		-	-	_	П	-	Н	П		\vdash			_		-	\rightarrow	\rightarrow			-		-	-	\rightarrow	_	-	\rightarrow	_	+

Resumen de aplicaciones

		ECOLINE BLC 1000	PROFIN SI3	PROFIN VT3		SISTO-KB	SISTO-16	SISTO-16S	SISTO-16RGAMaXX	SISTO-16TWA	SISTO-20	SISTO-C		SISTO-20NA	SISTO-DrainNA		ZJSVM/RJSVM		ECOLINE GE1/GE2/GE3	ECOLINE GE4	0000	MIL 10000	MII 27000	MIL 29000	MIL 41000	MIL 50000	MIL 70000	MIL 71000	MIL 76000	MIL 77000	MIL 78000	MIL 81000	MIL 91000	MIL 90000
Riegos por aspersión			_		7	0,	0,	, 	٠, ا	0,	0,		S	0,	0,		17						_			_	_	_	_	_	_	_		
Minería	piezas	\dashv	_		a DIN/EN						\dashv	\dashv	aplicaciones nucleares			de by-pass		expansión	_		contorme a ANSI/ASME		_	+-							\dashv	\dashv	- 3	automática
Regadíos	s pi	\dashv	\rightarrow		5	-							ucle			by-		pan			¥ –	T	-	+	ī						\dashv	\dashv		Ĕ –
Industria química	tre		_		Je a				_				S ni			de		ě	_		Z -		_								\dashv	\dashv		aut
Aumento de presión	de bola de tres	\neg	\rightarrow	-	orm	Г						\neg	one			urgencia y		Juntas de			e e	\top	\top	\top	Т						\dashv	\neg		o
Eliminaciones	oole	\neg			onf	Г						\neg	caci			enc		nta			Ĕ	\top	\top	\top	Т						\dashv	\neg		acı
Achiques/drenajes	de k				0								aplic			urg		7		٠,	price		T	T							T	T		
Instalaciones descascarilladoras					istic								ra			de							T	T							T	T		rec
Sistemas urbanos de calefacción	Válvulas				elé								para			cierre				•													-	de
Transporte de sólidos	Vá				nto	ਾ							ana			cie					j i		I											Válvulas de recirculación
Sistemas contra incendios					asie								nbr			a de					de		I										-	álvu
Tuberías de gas					Válvulas de membrana con asiento elástico conforme								membrana			Sistema					Válvulas de control		I											>
Acumuladores de gas					a								de r			iste					áΙνι													
Mantenimiento del nivel freático					ran								las (٠,				:	>		\perp											
Abastecimiento de agua doméstica					gwa								Válvulas										<u> </u>		Ļ						_	_		
Sistemas de calefacción, climatización y					Ĕ								Vá										ıl											
ventilación		_			e de	_												-				+	4	μ_	_	_					4	_	_	
Homogeneización		_	_	_	ulas	<u> </u>		\vdash														+	+	-	_	_					4	_	_	
Sistemas de recirculación industrial		_		Щ	áľv							_		_								+_	+	+_	├_						_	\dashv	_	
Centrales nucleares		\dashv		_	>	_						-			Ш	}		-	-	-	H	-	4		+	-						\rightarrow		
Alimentación de calderas		-	-			<u> </u>					-	-									-	+_	+	+		-					-	_		
Reirculación de calderas		-							_			-				}				_	-			+		-			_			-	-	
Plantas depuradoras Instalaciones de climatización		\dashv				-	_					-			-						H	H	_	+		-			_		\dashv	+	-	
Transporte de condensados		\dashv	-	_			Ħ	H	_			\blacksquare		_					-	-			_	+		\vdash					\dashv	\dashv	\dashv	
Centrales eléctricas convencionales			-	-		H	Ħ	Ħ	_		7	-								-		H		+		-			_			\dashv		
Circuitos de refrigeración		-				-	Ħ		_		Ħ	\dashv		_			-					#	_	+	F	\vdash					-	\dashv	-	-
Sistemas de pintura		\dashv	\rightarrow				Ī	Ħ	_	-		\dashv							_	-		╅	+	+	┌	\vdash					\dashv	\dashv	\exists	
Industrias alimentaria y de bebidas			_			⊢	_				_	T										+	+	+	\vdash	\vdash					\dashv	\dashv	\exists	
Desalación/ósmosis inversa		-				\vdash	П	П				-							_	-				+		\vdash					\dashv	\dashv	-	
Mezclas		\neg				_	Ī															╁		†	╁▔						\dashv	\dashv	7	
Industria papelera y de celulosa				П			Ħ	Ħ				\exists											ı	\top							\dashv	\dashv	7	
Industria petroquímica								П				\neg							\dashv					\top		\vdash					\dashv	\dashv		
Industria farmacéutica																								ı							\dashv	\dashv		
Tuberías y depósitos												\neg											T	T							\dashv	\dashv		
Refinerías																							T											
Desulfuración de gases de combustión																							ı T								T			
Recogida de agua de lluvia																																		
Recirculación																							ı											
Industria naval																																		
Eliminación de lodos																					l		╙	_	\perp							_		
Procesamiento de lodos		_										_										•	\perp	\perp	\perp						_	_		
Cañones de nieve						_						_										\perp	_	_	_						4	_	_	
Tecnología para piscinas		_		ш		_						_							\rightarrow	4		\perp	\perp	\perp	\vdash	_					\dashv	\dashv	_	
Mantenimiento en suspensión		_		_								_			Щ				_			4	\perp	+	-				Щ	Ш	_	4	_[
Circulación de aceite térmico			_	_		Ļ					_	_			Щ				_				1	-							4	4	_[
Ingeniería de procesos															\square				-			+	+	+	-	_	-		Щ	\vdash	+	+	_	
Sistemas de recuperación de calor		_	_	_		\vdash		$\vdash \vdash$		_		\dashv			\vdash		\vdash					+_	+	+	-					$\vdash \vdash$	+	+	_	
Calefacción por agua caliente		\dashv				F						-			\vdash		-						+	+		_				\vdash	\dashv	+	-	
Plantas de lavado Tratamiento de aguas		_	믭	_		-		H		-					\vdash		-		\dashv				+	+		\vdash				\vdash	+	+	-	
Extracción de agua		\dashv	-								-	-			Н		\vdash				-	-	+	+		\vdash	-		\vdash	\vdash	+	+	-[
Abastecimiento de agua		\dashv				_	_	\vdash				\dashv			\dashv		\dashv		\dashv				+	+					\vdash	\vdash	\dashv	+		
		\dashv	-	_					_	_		П			\vdash		\vdash		\dashv				_	+		\vdash				\vdash	-	\dashv	-[
Industria azucarera																															- 1	- 1		

Aplicaciones productos regionales Chile

					-																														
								9																											
								ECOLINE GTR16p/GTR16o																											
								F G									ט																		
								ģ									ž		2	0	5							ш				S			
		6				윤		31						16	9		Σ̈́		12	15	2	9					ш.	E	т		L	g			
		Š		ĮĄ		~		Ę						⋨	Ѯ		Ĕ		X	X	Υ	5		0	οT		121	121	121		듄	73			
		ĺ		lω		ŭ.		ш					Q	ш	Ш		Ш		ш	ш ;	_	<u>-</u>		30	30		₹	<u>-</u>	<u>-</u>		<u>r</u>	<u> -</u>			
		ECOLINE VA40		ECOLINE XLC		LYNX 3 F - RFP		S		CYL SK	CYL SL		SR 20.40	ECOLINE RA16	ECOLINE RA40		ECOLINE CTGM NG		ECOLINE DC 125	ECOLINE DC 150	Í	Filtro Y PN 16		Eco HP 300	Eco HP 300T		PROFIN-VT2F	PROFIN-VT2F TF	PROFIN-VT2H		PROFIN-SI3IT	PROFIN-VT3 Gas			
		8		8		Σ		8		굿	۲		2	8	8		8		8	8	3	불		8	8		2	2	2		2	2			
				ŭ		7		ŭ		U	U		S	ш	ш		ш		ш	ш	ů 📗	证		ш	ш						_				_
Riegos por aspersión	Z		Z		Z		Z		Z			Z				Z		Æ			Z		ad			as				as					
Minería	DIN/EN		a DIN/EN		a DIN/EN		a DIN/EN		DIN/EN			DIN/EN				DIN/EN		ANSI/ASME			DIN/EN		excentricidad			piezas				piezas					
Regadíos	a D				0				a D			а D				a D		SI			a D		iti									П	П		_
Industria química			Je 9									je 9			ĺ	<u>э</u> е		A	П		9		cer			dos				tres		П	\neg	\neg	_
Agua a presión	Ē		E		Į.		ш		Ë			conforme				ш		Ø					ě			g				g			\neg	\dashv	_
Desagües	l fu	F	nfo	┢	ırfe	⊢	nfe		nf G	Н	+	Į,			_	nfe	П	ŭ	П	_	■ onfo	-	ple		Ē	ola	Ī			ola	Ē	-	\dashv	+	_
Achiques/drenajes	- 8	H	0	\vdash	0	\vdash	S		0	Н	+	- 8		E		0	Ħ	conforme		_	Filtro conforme		de doble	Ē	Ħ	e b	ī	Ē	Ē	e p	F	-	+	+	—
	pas	H	Ϋ́	-	မြ	_	rtg	-	ió	\vdash	╁	ió	-	-	-	osa	-	Ö			<u> </u>	-	de	-	-	s d	-	-	-	s d	-		+	+	—
Instalaciones descascarilladoras	sto	L	res	L	ens	<u> </u>	no	_	- Su	-	╀	- Su	_	+	-	i.e	_		\vdash				Sa	<u> </u>	H	nla	_	L	_	nla	_	\vdash	\dashv	+	_
Sistemas urbanos de calefacción	ae		e D	╚	=	_	mc	_	ret		+	rete	_			ma	<u> </u>	ncic					ipc	▝	П	Válvulas de bola de				Válvulas de bola de	▝		\dashv	\dashv	
Transporte de sólidos	ens		S		ga	<u> </u>	O O		ge			9e				de mariposa conforme		ete	Ш	\perp			mariposa		\Box	>				>	_	Ш	\dashv	\perp	
Sistemas contra incendios	p		ora		Ju.		s de		as c			as c				- uç		e re					le r									\square			
Tuberías de gas	globo con prensaestopas conforme		Válvulas reductoras de presión conforme		Válvulas de purga y llenado conforme		Válvulas de compuerta conforme		Válvulas de retención conforme			Válvulas de retención				Válvulas de retención		Válvulas de retención	П				Válvulas de										T	T	_
Acumulador de gas	00		edi		as c		á V		(á)			/áj				ite		nla	П				Į,										\neg	\exists	_
Mantenimiento del nivel freático	힐		as r		Ĕ		>							T		9		á₹	П	\neg			/á/										\neg	\top	_
Suministro de agua doméstica	de o		ij		/á∫						+			\vdash		s de		>	Ħ				_										\dashv	+	_
Instalaciones de climatización	as c		/áj	H		Ē				Н	+					nla			Ħ	\rightarrow							ī				Ē	\vdash	+	+	—
Homogeneización	Válvulas	F	-	▐▔		⊨		-		\vdash	╁		\vdash	╒	-	ál∨	-				-	F		-	-		-	-	-		-		+	+	—
	Ję/	-		H		-		H		H	╀	-	-	╀	\vdash	>			Н	-	-	-		_			_		_		_	$\vdash\vdash$	\dashv	\dashv	—
Sistemas de circulación industriales		-		<u> </u>		_		H		H	-		_	╀	-				Н	_	_	_		_					_		_	\square	\dashv	\dashv	_
Centrales nucleares		_		_		_		_			_		_	_	_				Ш	_									_		_	Ш	\dashv	\dashv	_
Alimentación de calderas											_								◨													-	_	_	
Recirculación de calderas																																			
Estaciones depuradoras																																			
Instalaciones de climatización																																			
Bombeo de condensados				Г							\top								П															\top	_
Centrales eléctricas convencionales				r							\top									_													\dashv	\top	_
Circuitos de refrigeración		F		\vdash		H					+		\vdash	╫					H	_		F		F	Ħ		ī	Ē	F		E		\dashv	+	—
		-		H				H		\vdash	+	-	\vdash	\vdash	-				Н		-	-		-	-		-	-	_		-		\dashv	\dashv	—
Sistemas de pintura		-		H		H		H		\vdash	╀	-	H	+-	_							H		<u> </u>			_	_	_		L	\vdash	\dashv	\dashv	—
Industrias alimentaria y de bebidas		_		L		_		H		H	-	-	_	-					Н		_						_				▝		+	\dashv	_
Desalación de agua de mar/ósmosis																																			
inversa		L		_		_		<u> </u>		L	╀		_	╄	-		_		Н	_		L		<u> </u>			_	_	_		_	\sqcup	\dashv	\dashv	_
Mezclas				_		_					_			\perp					Ш			_		ш								-	\dashv	\dashv	_
Industria papelera y de la celulosa																			Ш					┖					Ш						
Industria petroquímica																																			
Industria farmacéutica																																			
Tuberías y depósitos																			П														\neg	\neg	_
Refinerías	-										\top			\vdash	\vdash				П						_			_				-	\dashv	\top	_
Desulfuración de gas de combustión	_			\vdash				H		Н	+			\vdash	\vdash				Н	-1	_			⊨	-		-	F	F		⊢	\exists	+	+	—
Aprovechamiento de agua pluvial		-		-		\vdash				\vdash	╁		-	+	 		Ħ		П	+	-	-		_							-	\vdash	+	+	_
		-		-	-	\vdash		-		\vdash	╁	-	-	+	-		-			_	_	-		_			_				_		+	+	_
Recirculación		L		L		H		H		H	-		_	-					\vdash	_		_		╚				-			┇	\vdash	\dashv	\dashv	_
Industria naval		_		_				L		L	_		_	<u> </u>					Ш		•						╚		ш		╚		\dashv	\dashv	_
Eliminación de lodos	-	L		L										\perp					Ш	_												Ш	_	\perp	
Procesamiento de lodos																	П		Ш													Ш	\perp		
Cañones de nieve																																			
Tecnología para piscinas																																			
Mantenimiento en suspensión																			П													П	\neg		_
Circulación de aceite térmico											T																						\neg	\top	_
Ingeniería de procesos		H		Н							+		Н	╫	 				H	_		F										-	\dashv	+	—
Sistemas de recuperación de calor				\vdash							+						\vdash			_					Ē		ī					\vdash	+	+	—
		H						-		-	+		\vdash	_			\vdash			\rightarrow	_	H		-			_		-		_	-	+	+	—
Calefacción por agua caliente						▝		-		-	+		-							_							_	-				\vdash	\dashv	\dashv	—
Plantas de lavado		-		-		<u> </u>		<u> </u>		_	+		\vdash	\vdash	\vdash		<u> </u>					H									▝		\dashv	+	_
Tratamiento de aguas	-	_		L		_		-		_	+		_	-	<u> </u>		므			\dashv				<u> </u>				_	<u> </u>		_	Ш	\dashv	\dashv	_
Extracción de agua		_									1									\perp											_	Ш	\dashv	\dashv	_
Abastecimiento de agua											_								Ц										-		_		\perp	\perp	
Industria azucarera																																			

Resumen de aplicaciones

Aplicaciones productos regionales Chile

																					ı					
		ECOLINE EST 150-600																								
		9																								
		72	_																							
		EST	IVC-EST, -VET																							
		뿌	Ė																							
		Ę	ĖS																							
		0	Š																							
Piagos par asparsión		_	_		Н																					_
Riegos por aspersión	piezas	_	_		Н	-			-	-	\vdash	-	-	Н	-	++	-	-	-	+		-	+		\vdash	—
Minería	pie	_			Н	-	_		_	-	\vdash	+	_	Н		++	_	_	-	_	Н	-	-		\vdash	—
Regadíos	bola de tres	_	_		Ш		_				\vdash	_		Ш		++		_	_	_	\vdash	-	\perp			_
Industria química	le t				Ш		_		_	_	\vdash	_		Ш		++		_	_			_	_		\vdash	
Agua a presión	a c				Ш		_		_		\sqcup	\perp		Ш		$\perp \perp$						_	\perp			
Desagües	poq				Ш		_				Ш			Ш							Ш	4				
Achiques/drenajes	Válvulas de													Ш												
Instalaciones descascarilladoras	las																									
Sistemas urbanos de calefacción	<u>N</u>																									
Transporte de sólidos	Vá	_ 7			LΠ						LT	_T				\bot \top					\Box	T			LT	_
Sistemas contra incendios																						\sqcap				_
Tuberías de gas																						\neg				_
Acumulador de gas					П						\Box	\top				+				\top		\dashv	\top			_
Mantenimiento del nivel freático					H				\dashv		\vdash	\top				+				\top		\dashv	\top			_
Suministro de agua doméstica		_			Н		\dashv		\dashv		\vdash	+				++				+		\dashv	+			_
Instalaciones de climatización		\neg			H	-	\dashv				\vdash	+		Н				\dashv		1	\vdash	\dashv	+			—
Homogeneización		_			Н	-	-1				\vdash	+		Н				\dashv		+-	H	\dashv	_			_
Sistemas de circulación industriales			_		Н	-	\dashv		_		\vdash	+		Н		++	-	\dashv		+	\vdash	\dashv	+			—
Centrales nucleares		-	_		Н	-	\dashv		_	-	\vdash	+	-	H		++	$\dashv \dashv$	-		+	H	\dashv	+			—
Alimentación de calderas			_		Н	-	\dashv			-	\vdash	+	-	Н		+	-	-	\vdash	+-	\vdash	\dashv	-			—
Recirculación de calderas					Н	-	-		_	-	\vdash	+	-	Н		+	-	-	-	-	H	\dashv	-		\vdash	—
	-	_	_		Н	-	\dashv		_	-	\vdash	-	-	Н		+		-	-	-	\vdash	+	-	-	\vdash	—
Estaciones depuradoras		-	_		Н	-	\dashv		_		\vdash	+	-	Н		+	_	-	-	-	$\vdash \vdash$	+	+			—
Instalaciones de climatización		_	_		Н	-	_	-		-	\vdash	_	_	Н		+	-	_	\vdash	_	\vdash	_	_	_	\vdash	
Bombeo de condensados			_		Н	-	\dashv		_		\vdash	_	_	Н		+	_	_	-	-	$\vdash \vdash$	\dashv	_		\vdash	—
Centrales eléctricas convencionales			_		Ш	-	_		_		\vdash	\perp	_	Ш		++		_	-		Ш	_	\perp			
Circuitos de refrigeración			ш		Ш	-	_				$\vdash \vdash$	_	_	Ш		\perp		_			Ш	4				
Sistemas de pintura					Ш		_				\sqcup			Ш		\perp		_				_				
Industrias alimentaria y de bebidas					Ш		_				\sqcup			Ш		\perp		_				_				
Desalación de agua de mar/ósmosis																										
inversa		_			Н	-	_		_	-	\vdash	-	_	Ш	_	++	_	_	_	-	\vdash	_	+			_
Mezclas		_	_		Ш		_		_	-	\vdash	+		Ш		++	_	_	_	-	Н	-	+		\vdash	
Industria papelera y de la celulosa					Ш	-	_		_		\vdash	_	_	Ш		++	_	4	_		Ш	4	\perp			
Industria petroquímica					Ш		_				\sqcup	\perp		Ш		$\perp \perp$					Ш	_	\perp			
Industria farmacéutica					Ш		_				Ш			Ш		\perp		_			Ш	_				
Tuberías y depósitos					Ш						Ш			Ш							Ш					
Refinerías					Ш									Ш												
Desulfuración de gas de combustión					Ш				ļ_		Ш			Ш		$\perp \perp$					Ш					_
Aprovechamiento de agua pluvial					Ш									Ш												
Recirculación					Ш									Ш												
Industria naval																										
Eliminación de lodos																										
Procesamiento de lodos					П									П												
Cañones de nieve					П									П											П	
Tecnología para piscinas					П									П												_
Mantenimiento en suspensión					П									П												_
Circulación de aceite térmico					П									П							П	\neg				_
Ingeniería de procesos					Н		\dashv		\top			\top				++				\top		\dashv	\top			_
Sistemas de recuperación de calor					Н		\dashv		\dashv		\vdash	+				++					\vdash	\dashv	+			—
Calefacción por agua caliente		_	_		H		\dashv		+		\vdash	+		H		++				+		+	+			_
Plantas de lavado		\dashv			Н		\dashv		\dashv		\vdash	+		H		++		-			\vdash	\dashv	+			_
Tratamiento de aguas					Н				\dashv		\vdash	+		H		++				+	H	+	+			_
Extracción de agua					Н				\dashv		\vdash	+		H		++				+	H	+	+			_
Abastecimiento de agua					H				\dashv		\vdash	+		H		++				+	H	+	+		\vdash	_
Industria azucarera					Н				\dashv		\vdash	+		H		++				+	\vdash	\dashv	+			_
		1																								_

Válvulas de globo con asiento elástico conforme a DIN/EN

BOA-SuperCompact

ΡN DN ≥ -10 - ≤ +120 T [°C]

6/10/16 Descripción

20 - 200 Válvula de globo tipo wafer conforme a DIN/EN, distancia entre caras supercompacta (DN) según EN 558/94, asiento inclinado y parte superior recta, orejetas de desmontaje para el centraje, desmontaje aguas abajo y uso como válvula de final de línea, cuerpo monobloc, tapa aislante con anticondensación de serie, indicador de posición, dispositivo de bloqueo, ajuste de carrera, cierre de paso con asiento elástico y asiento posterior, sin mantenimiento, totalmente aislable.

Sistemas de calefacción por agua caliente hasta 120 °C. Instalaciones de climatización. No apta para fluidos con contenido de aceite mineral, vapor y fluidos que ataquen el EPDM y la fundición gris. Otros fluidos previa solicitud.

BOA-Compact

PN DN T [°C]

15 - 200 ≥ -10 - ≤ +120

6/16 Descripción

Válvula de globo conforme a DIN/FN con bridas, distancia entre caras compacta FN 558/14, asiento inclinado y parte superior recta, cuerpo monobloc, obturador de regulación revestido de EPDM, cierre de paso con asiento elástico y asiento posterior, indicador de posición, dispositivo de bloqueo, ajuste de carrera, tapa aislante con anticondensación, sin mantenimiento, totalmente aislable

Aplicaciones

Sistemas de calefacción por agua caliente hasta 120 °C. Instalaciones de climatización. No apta para fluidos con contenido de aceite mineral, vapor y fluidos que ataquen el EPDM y la fundición gris. Otros fluidos previa solicitud.

BOA-Compact EKB

DN T [°C] 10/16 Descripción

15 - 200 Válvula de globo conforme a DIN/EN con bridas, distancia entre caras compacta, para instalaciones de abastecimiento de agua potable, revestimiento sintético electrostático interior y exterior, asiento inclinado y parte superior recta, obturador de regulación revestido de EPDM, cuerpo monobloc, indicador de posición, dispositivo de bloqueo, ajuste de carrera, cierre de paso con asiento elástico y asiento posterior, sin mantenimiento (homologación DVGW PN 10).

Aplicaciones

Instalaciones de abastecimiento de agua, de agua potable y de climatización. Circuitos de refrigeración. Para montaje en tuberías de cobre, hay que seguir las instrucciones de montaje. No apta para fluidos con contenido de aceite mineral, vapor y fluidos que ataquen el EPDM y el revestimiento EKB. Otros fluidos previa solicitud.

https://www.ksb.com/es-es/lc/B02A

BOA-W

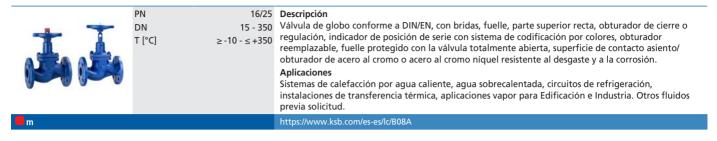
m. e

ΡN DN T [°C]

15 - 200 $\geq -10 \, - \leq +120$

≥ -10 - ≤ +80

6/16 Descripción


Válvula de globo conforme a DIN/EN con bridas, distancia entre caras estándar según EN 558/1, asiento inclinado y parte superior recta, cuerpo monobloc, obturador de regulación revestido de EPDM, cierre de paso con asiento elástico y asiento posterior, indicador de posición, dispositivo de bloqueo, ajuste de carrera, tapa aislante con anticondensación, sin mantenimiento, totalmente aislable.

Sistemas de calefacción por agua caliente hasta 120 °C. Instalaciones de climatización. No apta para fluidos con contenido de aceite mineral, vapor y fluidos que ataquen el EPDM y la fundición gris. Otros fluidos previa solicitud.

https://www.ksb.com/es-es/lc/B07E

Válvulas de globo con fuelle conforme a DIN/EN

BOA-H

BOA-H/HE/HV/HEV

AI	PN DN T [°C]	10 - 350	Descripción Válvula de globo conforme a DIN/EN con bridas (BOA-H y BOA-HV), extremos butt weld o socket weld (BOA-HE y BOA-HEV), con fuelle, parte superior recta, obturador de cierre o de regulación, superficie de contacto asiento/ obturador de acero al cromo o acero al cromo níquel resistente al desgaste y la corrosión. Aplicaciones Instalaciones industriales, edificación, centrales eléctricas y construcción naval. Para agua, vapor, aceite térmico, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
m , e, p			https://www.ksb.com/es-es/lc/B19A

NORI 40 ZXLBV/ZXSBV

5 to 10 to 1	PN	25/40	Descripción
7 7	DN	10 - 200	Válvula de globo conforme a DIN/EN con bridas (ZXLBV), extremos butt weld o socket weld (ZXSBV),
	T [°C]	≥ -10 - ≤ +450	con fuelle, parte superior recta, obturador de cierre o de regulación cónico, vástago bipieza, indicador de posición integrado y superficie de contacto asiento/ obturador de acero al cromo o acero al cromo níquel resistente al desgaste y la corrosión.
	>		Aplicaciones Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua, vapor, aceite térmico, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
<mark>●</mark> m			https://www.ksb.com/es-es/lc/N04A

NORI 40 ZXLB/ZXSB

A	PN 25/40 DN 10 - 200 T [°C] ≥ -10 - ≤ +450	Válvula de globo conforme a DIN/EN con bridas (ZXLB), extremos butt weld o socket weld (ZXSB), con
m , e, p		https://www.ksb.com/es-es/lc/N03A

NORI 40 ZYLB/ZYSB

	PN	25/40	Descripción
	DN	15 - 300	
	T [°C]	≥ -10 - ≤ +450	superior inclinada, obturador de regulación (hasta DN 100) o de cierre (a partir de DN 125) reemplazable, vástago no giratorio monopieza, indicador de posición, ajuste de carrera, dispositivo de bloqueo, superficie de contacto asiento/ obturador de acero al cromo o acero al cromo níquel resistente al desgaste y la corrosión.
			Aplicaciones Instalaciones de transferencia térmica, instalaciones industriales, edificación y construcción naval. Para aceite térmico, agua, vapor, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
<mark>●</mark> m			https://www.ksb.com/es-es/lc/N51A

BOACHEM-ZXAB/ZYAB

Válvulas de globo con fuelle conforme a ANSI/ASME

ECOLINE GLB 150-600

11.2.18	Class NPS [pulg.] T [°C]	2 - 12	Descripción Válvula de globo conforme a ANSI/ASME con bridas, cuerpo de acero fundido/ acero inoxidable, componentes internos (trim) y fuelle de acero inoxidable, con bonete atornillado rosca del vástago externa y estribo, cierre mediante empaquetadura del prensaestopas de grafito y fuelle metálico, anillos de estanqueidad de acero inoxidable/ grafito. Aplicaciones Instalaciones petroquímicas, instalaciones químicas, centrales de energía, ingeniería de procesos y aplicaciones de la industria general; para aceite térmico, vapor y fluidos tóxicos y volátiles. Otros fluidos previa solicitud.
m, e			https://www.ksb.com/es-es/lc/E14A

ECOLINE GLB 800

I	Class NPS [pulg.] T [°C]	1/2 - 2	Descripción Válvula de globo conforme a ANSI/ASME con casquillos roscados (NPT) o socket weld (SW), cuerpo de acero fundido/ acero inoxidable, componentes internos (trim) y fuelle de acero inoxidable, rosca del vástago externa y estribo, cierre mediante empaquetadura del prensaestopas de grafito y fuelle metálico, anillos de estanqueidad de acero inoxidable/ grafito. Aplicaciones Instalaciones petroquímicas, instalaciones químicas, centrales de energía, ingeniería de procesos y aplicaciones de la industria general; para aceite térmico, vapor y fluidos tóxicos y volátiles. Otros fluidos previa solicitud.
m, e			https://www.ksb.com/es-es/lc/E17A

Válvulas de globo con prensaestopas conforme a DIN/EN

NORI 40 ZXL/ZXS

	PN DN T [°C]	10 - 400	
m			https://www.ksb.com/es-es/lc/N02A

Válvulas

NORI 40 ZXLF/ZXSF

10 - 200 T [°C] ≥ -10 - ≤ +450

25/40 Descripción

Válvula ON/OFF conforme a DIN/EN con bridas, extremos butt weld o socket weld, con empaquetadura de prensaestopas, parte superior recta, obturador de cierre o de regulación, vástago no giratorio y superficie de contacto asiento/ obturador de acero al cromo o acero al cromo níquel resistente al

Aplicaciones

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

https://www.ksb.com/es-es/lc/N05A

NORI 160 ZXL/ZXS

DN T [°C]

63 - 160 Descripción

Válvula de globo conforme a DIN/EN con bridas (ZXL), extremos butt weld o socket weld (ZXS), con 10 - 200 empaquetadura de prensaestopas, parte superior recta, obturador de cierre o de regulación, vástago ≥ -10 - ≤ +550 giratorio, superficie de contacto asiento/ obturador de acero al 17 % de cromo o estelita resistente al

Aplicaciones

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

NORI 160 ZXLF/ZXSF

ΡN DN T [°C] 63 - 160 Descripción

10 - 200 ≥ -10 - ≤ +550

Válvula de globo conforme a DIN/EN con bridas (ZXLF), extremos butt weld o socket weld (ZXSF), con empaquetadura de prensaestopas, parte superior recta, obturador de cierre o de regulación, vástago no giratorio, superficie de contacto asiento/ obturador de acero al 17 % de cromo o estelita resistente al desgaste y la corrosión

Aplicaciones

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

m, e, p

https://www.ksb.com/es-es/lc/N13A

NORI 320 ZXSV

PN DN T [°C] 250 - 320 Descripción 10 - 50

 \geq -10 - \leq +580

Válvula de globo conforme a DIN/EN con extremos butt weld o socket weld empaquetadura de prensaestopas, parte superior recta, obturador de regulación, vástago no giratorio, unión cuerpoestribo mediante bayoneta, indicador de posición integrado y superficies estancas de estelita.

Aplicaciones

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

m, e, p

NORI 500 ZXSV

ΡN DN T [°C]

250 - 500

≥ -10 - ≤ +650

Descripción 10 - 65

Válvula de globo conforme a DIN/EN con extremos butt weld o socket weld con empaquetadura de prensaestopas, parte superior recta, obturador de regulación, vástago no giratorio, unión cuerpoestribo mediante bayoneta, indicador de posición integrado y superficie de contacto asiento/

Aplicaciones

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

m, e, p

BOACHEM-ZXA

DN 15 - 400 T [°C] ≥ -10 - ≤ +400

Válvula de globo conforme a DIN/EN con bridas, cuerpo de acero inoxidable, empaquetadura de prensaestopas, parte superior recta, vástago giratorio, obturador de cierre u obturador de regulación.

Aplicaciones

Ingeniería de procesos, industria, edificación, industria alimentaria y de bebidas, para fluidos agresivos. Otros fluidos previa solicitud.

https://www.ksb.com/es-es/lc/B38B

ECOLINE VA16

PN DN T [°C]

15 - 250 Válvula de globo conforme a DIN/EN con bridas, cuerpo de acero hierro fundido, empaquetadura de prensaestopas, vástago giratorio, obturador de cierre u obturador de regulación. ≥ -10 - ≤ +300

Anlicaciones

Sistemas urbanos de calefacción, suministro de agua doméstica, instalaciones de climatización. circuitos de refrigeración, sistemas de calefacción por aqua sobrecalentada, abastecimiento de aqua.

ECOLINE VA40

DN T_{min.} [°C] $T_{m\acute{a}x.}$ [°C]

15 - 200 Válvula de globo conforme a DIN/EN con bridas, cuerpo de acero carbono, con ≥ -10 prensaestopas, husillo giratorio y disco de cierre o de regulación.

Aplicaciones:

Sistemas urbanos de calefacción, suministro de aguas domésticas, instalaciones de climatización, circuitos de refrigeración, sistemas de calefacción por agua caliente, abastecimiento de agua.

Válvulas de globo con prensaestopas conforme a ANSI/ASME

ECOLINE GLC 150-600

Class NPS [pulg.] T [°C]

 $\geq 0 - \leq +649$

150 - 600 Descripción

2 - 10 Válvula de globo conforme a ANSI/ASME con bridas, fundición de acero A216 WCB, Trim 8 (estelita/ acero al 13 % de cromo) para la clase 150/300/600, Trim 5 (estelita/ estelita) para la clase 600, con bonete atornillado rosca del vástago externa y estribo, empaquetadura de prensaestopas de grafito, anillos de estanqueidad de acero inoxidable/ grafito.

Aplicaciones

Refinerías, centrales eléctricas, ingeniería de procesos, aplicaciones de industria en general, agua, vapor, aceite, gas. Otros fluidos previa solicitud.

ECOLINE GLF 150-600

Class NPS [pulg.] T [°C]

 $\geq 0 - \leq +816$

 $\frac{1}{2}$ - 2

150 - 600 Descripción

Válvula de globo conforme a ANSI/ASME con bridas, acero forjado A105, Trim 8 (estelita/ acero al 13 % cromo), con bonete atornillado rosca del vástago externa y estribo, empaquetadura de prensaestopas de grafito, anillos de estanqueidad de acero inoxidable/ grafito, paso reducido.

Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones navales; para agua, vapor, gas, aceite y otros fluidos no agresivos.

ECOLINE GLF 800

Class NPS [pulg.] T [°C]

800 Descripción 1/2 - 2

≥ 0 - ≤ +593

Válvula de globo conforme a ANSI/ASME con casquillos roscados (NPT), extremos butt weld (BW) o

socket weld (SW), Trim 8 (estelita/ acero al 13 % de cromo), con bonete atornillado rosca del vástago externa y estribo, empaquetadura de prensaestopas de grafito, anillos de estanqueidad de acero inoxidable/ grafito, disponible en acero al carbono y acero aleado.

Aplicaciones

Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones navales; para aqua, vapor, gas, aceite y otros fluidos no agresivos.

https://www.ksh.com/es-es/lc/F57A

ECOLINE GLV 150-300

NPS [pulg.] T [°C]

150 - 300 Descripción

2 - 12 ≥ -29 - ≤ +427

Válvula de globo conforme a ANSI/ASME con bridas, fundición de acero A216 WCB, A351 CF8/CF8M/ CN7M, Trim 2/8/10/13 para la clase 150/300, con bonete atornillado rosca del vástago externa y estribo, empaquetadura de prensaestopas de grafito, anillo de estanqueidad de acero inoxidable/grafito.

Aplicaciones

Química especializada, industria alimentaria, industria en general. Para agua, vapor, gas y otros fluidos. Otros fluidos previa solicitud.

m, e

https://www.ksb.com/es-es/lc/EF3B

SICCA 150-600 GLC

NPS [pulg.] T [°C]

150 - 600 Descripción

2 - 10 Válvula de globo conforme a ANSI/ASME con bridas o extremos butt weld, con bonete atornillado ≥ 0 - ≤ +593 rosca del vástago externa y estribo. Vástago ascendente, superfícies estancas de acero al 13 % de cromo con blindaje de estelita, con anillo de estanqueidad de grafito y empaquetadura de prensaestopas, disponible en acero al carbono, acero de baja aleación y acero inoxidable.

Refinerías, centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.

m. e

https://www.ksb.com/es-es/lc/S76A

SICCA 900-2500 GLC

NPS [pulg.] T [°C]

2 - 10 ≥ 0 - ≤ +650

900 - 2500 Descripción

Válvula de globo conforme a ANSI/ASME con extremos butt weld, ejecución de asiento inclinado, con tapa sellada a presión (pressure seal), roscado exterior del vástago y estribo, vástago ascendente y volante manual no ascendente, superficie de contacto asiento/ obturador y asiento posterior blindados con estelita, con anillo de estanqueidad de grafito y empaquetadura de prensaestopas; disponible en acero al carbono y acero aleado.

Aplicaciones

Centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.

SICCA 150-4500 GLF

Class NPS [pulg.] T [°C]

150 - 4500 Descripción

1/4 - 21/2 ≥ 0 - ≤ +816 Válvula de globo conforme a ANSI/ASME con casquillos roscados NPT (F) o soldados, o brida de fundición integral (clase 150-600) con bonete atornillado (clase 150-800) o tapa soldada (clase 1500/2500/4500), rosca del vástago externa y estribo, asiento del cuerpo blindado con estelita, superficie estanca del obturador de acero al 13 % de cromo con blindaje de estelita, con anillos de estanqueidad de grafito y empaquetadura de prensaestopas, disponible en acero al carbono y acero de baja aleación y acero inoxidable.

Aplicaciones

Refinerías, centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.

m, e

Válvulas de globo para aplicaciones nucleares

Válvulas de globo NUCA

ΡN ≤ 210 Descripción DN T [°C] \geq -29 - \leq +365

10 - 50 Válvula de globo con extremos butt weld o socket weld para aplicaciones nucleares, con empaquetadura de prensaestopas o fuelle, asiento reemplazable (NUCA-ES), parte superior recta y paso directo, de acero o acero inoxidable.

Aplicaciones

Sistemas de refrigeración del reactor, sistemas de moderador nuclear, sistemas de alimentación de seguridad, sistemas de agua de alimentación, sistemas de vapor vivo y sistemas de limpieza.

https://www.ksb.com/es-es/lc/N71A

ZXNB

m, e, p

PN DN T [°C]

≤ 210 Descripción

65 - 400 Válvula de globo con extremos butt weld para aplicaciones nucleares con requisitos relevantes para la ≥ -29 - ≤ +365 seguridad (SiWi), con fuelle, de paso recto, paso en ángulo o como válvula de dos vías, de acero o acero inoxidable.

Sistemas de refrigeración del reactor, sistemas de moderador nuclear, sistemas de alimentación de seguridad, sistemas de agua de alimentación, sistemas de vapor vivo y sistemas de limpieza.

https://www.ksb.com/es-es/lc/Z18A

ZXNVB

PN DN T [°C]

≤ 210 Descripción 4 - 25

Válvula de globo con extremos butt weld o socket weld para aplicaciones nucleares, con empaquetadura de prensaestopas o fuelle, parte superior recta, de paso recto, de acero o acero

Aplicaciones

Sistemas de refrigeración del reactor, sistemas de moderador nuclear, sistemas de alimentación de seguridad, sistemas de agua de alimentación, sistemas de vapor vivo y sistemas de limpieza.

https://www.ksb.com/es-es/lc/Z19A

ZYNB/ZYN

PN DN T [°C]

300 - 400 \geq -29 - \leq +200

 $\geq -29 - \leq +365$

≤ 50 Descripción

Válvula de globo con extremos butt weld para aplicaciones nucleares con requisitos relevantes para la seguridad (SiWi), con empaquetadura de prensaestopas o fuelle, parte superior inclinada, en fundición de acero inoxidable.

Sistemas nucleares de refrigeración final.

Válvulas de control conforme a DIN/EN

BOA-CVE C/CS/W/IMS/EKB/IMS EKB

 \geq -10 - \leq +120

6/10/16 Descripción

15 - 200 Válvula de regulación conforme a DIN/EN de las series estándar BOA-Compact, BOA-SuperCompact, BOA-W, BOA-Compact EKB, BOA-Compact IMS EKB, BOA-Control IMS y BOA-Control IMS EKB, cuerpo monobloc bajo presión con obturador elástico para una tasa de fugas seleccionable desde 0.05~%hasta la estanqueidad, valores Kvs entre 6,3 y 700 m³/h y presiones de cierre de hasta 16 bar, con actuadores eléctricos inteligentes preajustados y controlados por microprocesador de 1000 N a 14 000 N, posibilidad de configuración electrónica de la curva característica de la válvula, del valor Kvs, de la señal de actuación y del tiempo de actuación por medio de un PC o un dispositivo de parametrización manual, ajuste de fábrica según las preferencias del cliente.

Aplicaciones

Agua sobrecalentada hasta 120 °C. Sistemas de ventilación y de climatización. Instalaciones de abastecimiento de agua, agua potable. No apta para fluidos con contenido de aceite mineral, vapor y fluidos que ataquen el EPDM y la fundición gris no revestida. Otros fluidos previa solicitud.

BOA-CVE H

PΝ DN T [°C] 15 - 200

≥ -10 - ≤ +450

16/25/40 Descripción

Válvula de regulación de bajo mantenimiento conforme a DIN/EN con bridas, con posibilidad de seleccionar una característica de control lineal o equiporcentual con valores Kvs de entre 0,1 y 630 m³/ h y presiones de cierre de hasta 40 bar; fácil sustitución de todas las piezas internas sin herramientas especiales, incluido el asiento reversible; reducción del nivel de ruido de serie mediante la descompresión de la válvula en dos etapas combinando un obturador parabólico con una jaula multiorificios; con actuador eléctrico.

Anlicaciones

Instalaciones para industria en general, ingeniería de procesos, ingeniería de plantas, circuitos de refrigeración, sistemas de calefacción,

https://www.ksb.com/es-es/lc/B26A

BOA-CVP H

PN DN T [°C]

15 - 200 ≥ -10 - ≤ +450

16/25/40 Descripción

Válvula de regulación de bajo mantenimiento conforme a DIN/EN con bridas, con posibilidad de seleccionar una característica de control lineal o equiporcentual con valores Kvs de entre 0,1 y 630 m³/ h y presiones de cierre de hasta 40 bar; fácil sustitución de todas las piezas internas sin herramientas especiales, incluido el asiento reversible; reducción del nivel de ruido de serie mediante la descompresión de la válvula en dos etapas combinando un obturador parabólico con una jaula multiorificios; con actuador neumático.

Aplicaciones

Instalaciones para industria en general, ingeniería de procesos, ingeniería de plantas, circuitos de refrigeración, sistemas de calefacción.

Válvulas de control conforme a ANSI/ASME

MIL 10000

Class NPS [pulg.] T [°C]

150 - 1500 Descripción

34 - 16 La válvula de control de asiento doble superior e inferior se caracteriza por una alta disminución de la ≥ -29 - ≤ +454 presión permisible a través de la válvula. Las grandes tasas de caudal relacionadas con el diseño están relacionadas con una baja recuperación de presión. Se permite un gran rango de flujo en ambos lados, adecuado para líquidos viscosos

Aplicaciones

Ingeniería industrial, de centrales eléctricas y de procesos.

https://www.ksb.com/es-es/lc/M15A

MIL 21000

Class NPS [pulg.] T [°C]

150 - 2500 1/2 - 10

Descripción

Válvula de control de un asiento superior, para esfuerzos elevados, amplio rango de temperaturas.

Aplicaciones ≥ -100 - ≤ +566

Ingeniería industrial, de centrales eléctricas y de procesos.

https://www.ksb.com/es-es/lc/M57A

MIL 27000

Class NPS [pulg.] T [°C]

150 - 300 1/2 - 2

Descripción

Diseño compacto y ligero, guiado del vástago robusto, accionamiento reversible in situ, cierre hermético.

 \geq -27 - \leq +427 **Aplicaciones**

La válvula se utiliza en entornos industriales con disminución de la presión media, para líquidos con bajo contenido de sólidos, líquidos viscosos en refinerías e industria petroquímica, farmacéutica, química y biomédica, donde una supervisión y un control precisos de la posición de la válvula son críticos para la calidad del producto.

https://www.ksb.com/es-es/lc/M31A

MIL 29000

Class NPS [pulg.] T [°C]

150 - 1500 Descripción

1/2 - 1 Válvulas de microflujo compactas con una alta relación de ajuste (500:1), valvulería interna de cambio ≥ -100 - ≤ +343 rápido para el ajuste del valor del flujo in situ, guiado de jaula robusto, modelo anticavitación posible.

Aplicaciones

Ingeniería industrial, de centrales eléctricas y de procesos (p. ej., regulación precisa de agua pulverizada), tecnología química, petroquímica, tecnología farmacéutica.

MIL 41000

Class NPS [pulg.] T [°C]

1/2 - 36 \geq -196 - \leq +566

150 - 4500 Descripción

Válvulas de control de un asiento con guiado de jaula para los esfuerzos más elevados, alta disminución de la presión permisible, reducción de ruidos y medidas de anticavitación posibles mediante la sustitución de la jaula estándar.

Aplicaciones

Ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

e, h, p

https://www.ksb.com/es-es/lc/M37A

MIL 50000

Class NPS [pulg.] T [°C]

 $\frac{1}{2}$ - 4

150 - 2500 Descripción

Válvulas de control de temperaturas bajas con carcasa alargada; obturador robusto, guiado y alargado; unión roscada de la carcasa/parte superior fuera de la Cold Box.

≥ -250 - ≤ -27 Aplicaciones

Uso en terminales de carga de LNG, depósitos de almacenamiento durante transporte y almacenamiento, para comprobación en banco de ensayo de motores criogénicos para cohetes y naves especiales, instalaciones de fabricación y procesamiento para LPG, etc.

e, h, p

Válvulas

MIL 70000

Class 150 - 2500 Descripción NPS [pulg.] 1/2 - 10

Válvulas de control de un asiento superior en diseño angulado para esfuerzos elevados.

Aplicaciones T [°C] ≥ -100 - ≤ +566

Ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

39

https://www.ksh.com/es-es/lc/M40A

MIL 71000

Class NPS [pulg.]

T [°C]

150 - 4500 Descripción

Válvula angulada de alto rendimiento y un asiento con guiado de jaula. 1/2 - 36

Aplicaciones ≥ -196 - ≤ +566

Ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

e, h, p

MIL 76000

Class NPS [pulg.] T [°C]

150 - 2500 Descripción

1 - 2 Las válvulas anguladas están diseñadas para todas las aplicaciones en las que pueden producirse flashing (destilación flash) o flujos bifásicos (líquidos y gaseosos), sin erosión de la carcasa/valvulería ≥ -27 - ≤ +566 interna, sin vibraciones ni generación de ruidos. El diseño angular permite un autodrenaje de la válvula.

Aplicaciones

Ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

e, h, p

MIL 77000

Class NPS [pulg.] T [°C]

600 - 2500 Descripción

Válvula de control silenciosa multietapa con valvulería interna laberíntica. 2 - 8

 \geq -27 - \leq +566 Aplicaciones

Ingeniería industrial, de centrales eléctricas (p. ej., válvula de derivación de arranque) y de procesos, tecnología química, petroquímica (p. ej., válvula de control de separadores de alta presión calientes

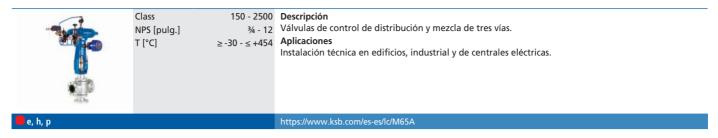
e, h, p

MIL 78000

Class NPS [pulg.] T [°C]

≥ -29 - ≤ +260

150 - 2500 Descripción


1/2 - 6

Válvula de control multietapa con modelo anticavitación, resistente al desgaste, valvulería interna multietapa, con buje de flujo extraíble/pieza distanciadora.

Ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

e, h, p

MIL 81000

MIL 91000

7	Class NPS [pulg.] T [°C]	3/4 - 20	Descripción Válvula de control multietapa con obturador laberíntico y valvulería interna de matriz, reducción de presión con hasta 50 etapas y hasta 420 bar. Sin cavitación, gran reducción de velocidad del líquido. Aplicaciones Ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.
<mark>e</mark> e, h, p			https://www.ksb.com/es-es/lc/M76A

Válvulas de recirculación automática

MIL 90000

	Class NPS [pulg.] T [°C]	15-12	Descripción La válvula de retención de marcha libre es una válvula multifunción con el cometido principal de garantizar en todo momento que la bomba centrífuga suministre un caudal mínimo de bombeo predefinido. Aplicaciones Centrales eléctricas, refinerías, petroquímica.
e, h, p			https://www.ksb.com/es-es/lc/M74A

Válvulas de globo y de regulación conforme a DIN/EN

BOA-Control/BOA-Control IMS

ΡN DN T [°C]

 \geq -10 - \leq +120

16 Descripción

15 - 350 BOA-Control IMS:

Válvula de equilibrado hidráulico conforme a DIN/EN con bridas, cuerpo monobloc, obturador de regulación, indicador de posición graduado, ajuste de carrera y tapa aislante con anticondensación, sin mantenimiento, totalmente aislable, con sensores de ultrasonido para la medición ultrasónica del caudal y de la temperatura sin contacto con el fluido; medición portátil con el ordenador de medición BOATRONIC MS, medición permanente con el ordenador de medición BOATRONIC MS-420, precisión constante sin importar las presiones diferenciales. También disponible en ejecución para agua potable con certificación DVGW v revestimiento sintético electrostático (BOA-Control IMS EKB: hasta DN 200). **BOA-Control**:

Válvula de regulación de caudal conforme a DIN/EN con bridas, cuerpo monobloc, obturador de regulación, indicador de posición graduado, ajuste de carrera y tapa ajslante con anticondensación, sin mantenimiento, totalmente aislable, apta para la medición ultrasónica del caudal y de la temperatura sin contacto con el fluido, medición portátil con el ordenador de medición BOATRÓNIC MS, precisión constante sin importar las presiones diferenciales. También disponible en ejecución para aqua potable con certificación DVGW y revestimiento sintético electrostático (BOA-Control EKB; hasta DN 200).

Sistemas de calefacción por agua caliente de hasta 120 °C (BOA-Control y BOA-Control IMS), instalaciones de climatización y sistemas de refrigeración, así como para medición permanente (BOA-Control IMS), instalaciones de agua potable y circuitos de refrigeración industriales (variante EKB). No apta para fluidos con contenido de aceite mineral, vapor y fluidos que ataquen el EPDM y la fundición aris no revestida

m, e

https://www.ksb.com/es-es/lc/B05B

BOA-Control PIC

DN T [°C]

10 - 150

≥ -10 - ≤ +120

16/25 Descripción

Válvula combinada independiente de la presión que consta de un regulador de flujo de ajuste continuo y una válvula de regulación para el equilibrado hidráulico, para la regulación de flujo volumétrico en situaciones con una autoridad de válvula constante, con conexión roscada (DN 10-50) y conexión de brida (DN 65-150). Ajuste continuo del valor especificado del flujo volumétrico directamente en la válvula gracias a la escala digital con función de bloqueo mecánico. Con boquillas de medición para controlar la presión y la presión diferencial mínima existente. Disponible en varios rangos de regulación del flujo volumétrico (LF/HF): de 43 a 8586 l/h en el área de la rosca y de 4,4 a 160 m³/h en el área de la brida. Con opción de instalar un actuador (M 30 x 1,5) para la regulación eléctrica de otra variable, como la temperatura ambiente, ajustando el flujo volumétrico.

. Instalaciones de calefacción, climatización y refrigeración (como instalaciones de calefacción central o por suelo radiante, sistemas de ventiloconvectores y techos refrigerantes), y plantas industriales.

BOA-Control SBV

DN T [°C]

15 - 50

≥ -10 - ≤ +120

25 Descripción

Válvula de regulación de caudal y de medición que no requiere mantenimiento con conexión roscada interna, modelo de asiento inclinado, ajustes previos variables continuos con indicador de posición legible de 360 grados. Con limitador de elevación y 2 conexiones con orificio de medición fijo (tolerancia de +/- 5 %) para medir la presión diferencial, la presión y el flujo. Requiere poco espacio gracias al volante no ascendente y a la posición de todas las piezas funcionales en el lateral del volante.

Aplicaciones

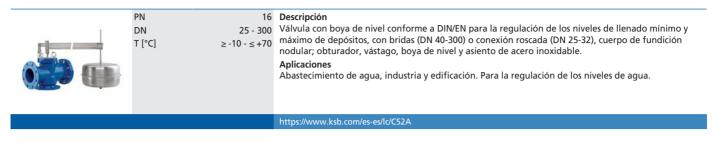
Instalaciones de calefacción, climatización y refrigeración, y plantas industriales.

BOA-Control DPR

DN T [°C]

≥ -10 - ≤ +120

15 - 100 Regulador de presión diferencial de caudal/regulador proporcional para la regulación constante del valor nominal de presión diferencial ajustable sin energía auxiliar, con conexión roscada (DN 15 - 50) y conexión de brida (DN 65 - 100). Valor nominal ajustable de forma continua y legible desde el exterior en cualquier momento. Válvula de cierre automático con las subidas de presión. Con boquillas de medición rápida para medir la pérdida de presión. Disponible en varios rangos de regulación de presión (LP/HP): de 5 a 80 kPa en el área de la rosca y de 80 a 160 kPa en el área de la brida.

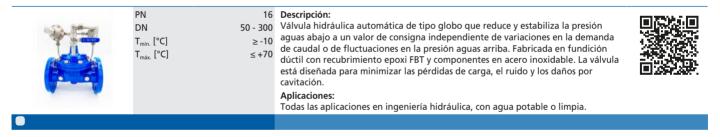

Aplicaciones

Instalaciones de calefacción, climatización y refrigeración, y plantas industriales.

https://www.ksb.com/es-es/lc/B66A

Válvulas reguladoras de nivel conforme a DIN/EN

CONDA-VLC



Válvulas reductoras de presión conforme a DIN/EN

CONDA-VRC

PN DN T [°C]	16/25/40/63 15 - 150 ≥ -10 - ≤ +70	Válvula reductora de presión de acción directa conforme a DIN/EN con bridas (DN 50-150) o conexión
		https://www.ksb.com/es-es/lc/C53A

ECOLINE XLC

Válvulas de mantenimiento de presión conforme a DIN/EN

CONDA-VSM

Válvulas de venteo y purga conforme a DIN/EN

BOAVENT-AVF

DN T [°C] \geq -10 - \leq +120

16 Descripción

50 - 300 Válvula de venteo y purga automatizada trifuncional con dos boyas, con bridas, cuerpo de fundición nodular, con doble cámara y boyas ABS. La válvula de venteo y purga garantiza el correcto funcionamiento de la red de tuberías. Su particularidad reside en que permite la entrada y escape de grandes volúmenes de aire y el escape de pequeños volúmenes de aire durante el funcionamiento.

. Abastecimiento de agua, agua limpia, regadios.

https://www.ksb.com/es-es/lc/B45A

BOAVENT-SIF

PN DN T [°C]

 \geq -10 - \leq +70

16 Descripción

25 - 200 Válvula de venteo y purga trifuncional con una boya, con bridas (DN 25-300R) o conexión roscada (DN 25-150), cuerpo de acero inoxidable, con una sola cámara y boya de polipropileno. La válvula de venteo y purga garantiza el correcto funcionamiento de la red de tuberías. Su particularidad reside en que permite la entrada y escape de grandes volúmenes de aire y el escape de pequeños volúmenes de aire durante el funcionamiento.

Aplicaciones

Abastecimiento de agua, agua limpia, regadios.

BOAVENT-SVA

PN DN T [°C]

≥ -10 - ≤ +60

16 Descripción

50 - 200 Válvula de venteo y purga automatizada trifuncional con una boya, con bridas o conexión roscada, cuerpo de fundición nodular, con una sola cámara y boya de polipropileno. La válvula de venteo y purga garantiza el correcto funcionamiento de la red de tuberías. Su particularidad reside en que permite la entrada y escape de grandes volúmenes de aire y el escape de pequeños volúmenes de aire durante el funcionamiento.

Aplicaciones

Abastecimiento de agua, aguas residuales, aguas residuales no tratadas.

https://www.ksb.com/es-es/lc/B46A

BOAVENT-SVF

PN DN T [°C]

25 - 300 ≥ -10 - ≤ +70

16/25/40 Descripción

Válvula de venteo y purga automatizada trifuncional con una boya, con bridas (DN 25-300R) o conexión roscada (DN 25-150), cuerpo de fundición nodular (PN 16-40) o acero al carbono (PN 64), con una sola cámara y boya de polipropileno. La válvula de venteo y purga garantiza el correcto funcionamiento de la red de tuberías. Su particularidad reside en que permite la entrada y escape de grandes volúmenes de aire y el escape de pequeños volúmenes de aire durante el funcionamiento.

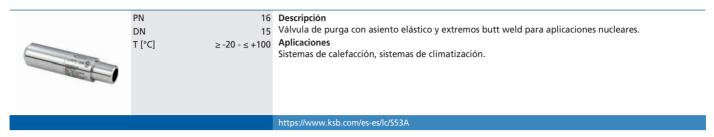
Aplicaciones

Abastecimiento de agua, agua limpia, regadios.

https://www.ksb.com/es-es/lc/B47A

LYNX 3 F - RFP

ΡN DN $T_{min.} \, [^{\circ}C]$ $T_{máx.}$ [°C] 16 Descripción:

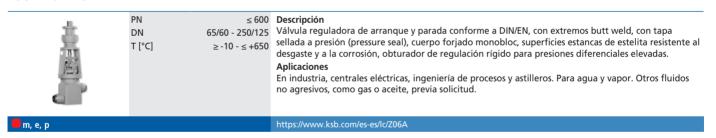

50 - 250 Ventosa que asegura la correcta operación de la red de tubería permitiendo la purga de bolsas de aire en condiciones de trabajo bajo presión, la admisión de ≥ -10 grandes cantidades de aire durante el proceso de vaciado y la descarga de aire con ≤+60 velocidad controlada durante el llenado de la tubería para evitar el golpe de

Aplicaciones:

Todas las aplicaciones en ingeniería hidráulica, con agua potable o limpia.

Válvulas de purga para aplicaciones nucleares

SISTO-VentNA



SISTO-KRVNA

PN DN T [°C]	25 - 100	Descripción Válvula de purga con bridas o extremos butt weld para aplicaciones nucleares, con asiento elástico y bola flotante. Aplicaciones Ventilación de depósitos, sistemas de drenaje.
		https://www.ksb.com/es-es/lc/S35A

Válvulas todo o nada conforme a DIN/EN

ZJSVA/ZXSVA

Válvulas de compuerta conforme a DIN/EN

COBRA-SGP/SGO

	PN DN T [°C]	10/16 40 - 600 ≥-10 - ≤ +110	Descripción Válvula de compuerta conforme a DIN/EN con bridas, cuña con revestimiento de elastómero, bonete atornillado, vástago giratorio, rosca del vástago interna, cuerpo de fundición nodular. Aplicaciones Instalaciones de abastecimiento de agua, sistemas de tratamiento de agua, instalaciones de climatización.
m, e			https://www.ksb.com/es-es/lc/C50A

45

COBRA-SMP

ΡN DN 40 - 300 T [°C] ≥ -10 - ≤ +110

16 Descripción

Válvula de compuerta conforme a DIN/EN con bridas, bonete atornillado, asiento metálico, vástago giratorio, rosca del vástago interna, cuerpo y cuña articulada de fundición nodular, vástago y asientos de acero inoxidable.

Aplicaciones

Instalaciones de abastecimiento de aqua, sistemas de calefacción, instalaciones de climatización, aplicaciones de la industria general, edificación.

ECOLINE SP

PN DN T [°C] 10/16/25 Descripción

40 - 600

≥ -10 - ≤ +110

Válvula de compuerta conforme a DIN/EN con bridas, con bonete atornillado, asiento metálico, vástago giratorio, rosca del vástago interna, cuerpo de hierro fundido, asientos de latón.

Aplicaciones

Instalaciones de abastecimiento de agua, sistemas de calefacción, instalaciones de climatización. aplicaciones de la industria general, ingeniería hidráulica, edificación.

m, e

ECOLINE GTR16p/GTR16o

PN DN NPS [pulg.] $T_{min.} \left[^{\circ}C \right]$ $T_{máx.}$ [°C]

150 Descripción:

Válvula de compuerta con cierre elastomérico recubierto con bonete apernado, $\frac{1}{2} - 6$ tornillo inserto, vástago ascendente. Bridas según normas EN. Longitud cara a cara 1 - 2

a EN 558/14 y EN 558/15. Cuerpo de fundición nodular. ≥ -30

Anlicaciones

≤+160 Sistemas de abastecimiento de agua, sistemas de tratamiento de agua, sistemas de aire acondicionado.

ECOLINE GT 40

PN DN T [°C]

50 - 600

10 - 40 Descripción

Válvula de compuerta conforme a DIN/EN con bridas o extremos butt weld, con bonete atornillado, cuerpo de acero fundido, vástago no giratorio, cuña articulada, superficie de contacto asiento/ obturador de acero al 13 % de cromo o estelita resistente al desgaste y la corrosión.

Aplicaciones

Instalaciones industriales, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

STAAL 40 AKD/AKDS

ΡN DN T [°C]

50 - 900

 \geq -10 - \leq +400

10 - 40 Descripción

Válvula de compuerta conforme a DIN/EN con bridas o extremos butt weld, con bonete atornillado, cuerpo forjado o soldado, vástago no giratorio, placas de cuña móviles para una perfecta adaptación a ≥ -10 - ≤ +530 los asientos, superficie de contacto asiento/ obturador de acero al 17 % de cromo resistente al desgaste y la corrosión.

Aplicaciones

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

STAAL 100 AKD/AKDS

AKG-A/AKGS-A

	PN DN T [°C]	65 - 300	Descripción Válvula de compuerta conforme a DIN/EN con bridas (AKG-A) o extremos butt weld (AKGS-A), con tapa sellada a presión (pressure seal), cuerpo forjado o soldado, vástago no giratorio, placas de cuña móviles para una perfecta adaptación a los asientos, superficie de contacto asiento/ obturador de acero al 17 % de cromo o estelita resistente al desgaste y la corrosión. Aplicaciones Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.
m , e, p			https://www.ksb.com/es-es/lc/A01A

ZTS

A	PN Class DN NPS [pulg.] T [°C]	≤ 600 4500 50 - 800 2 - 32 ≥ -10 - ≤ +650	Válvula de compuerta conforme a DIN/EN o ANSI/ASME con extremos butt weld, tapa sellada a presión (pressure seal), cuerpo forjado monobloc, superficie de contacto asiento/ obturador de estelita resistente al desgaste y la corrosión, placas de cuña móviles para una perfecta adaptación a los asientos del cuerpo
m , e, p			https://www.ksb.com/es-es/lc/Z05A

Válvulas de compuerta conforme a ANSI/ASME

ECOLINE GIBO 150-600

	Clase NPS [pulg.] T [°C]	2 - 12	Descripción Válvula de compuerta conforme a ANSI/ASME con bridas o extremos para soldar, cuerpo de acero fundido/ acero inoxidable, componentes internos (trim) y fuelle de acero inoxidable, con bonete atornillado, rosca del vástago externa y estribo, cierre mediante empaquetadura del prensaestopas de grafito y fuelle metálico, anillos de estanqueidad de acero inoxidable/ grafito. Aplicaciones Instalaciones petroquímicas, instalaciones químicas, centrales de energía, ingeniería de procesos y aplicaciones de la industria general; para aceite térmico, vapor y fluidos tóxicos y volátiles. Otros fluidos previa solicitud.
m, e			https://www.ksb.com/es-es/lc/EH7A

ECOLINE GTB 800

arres.	Class	150 - 800	Descripción
4	NPS [pulg.] T [°C]	> 0 - < +427	Válvula de compuerta conforme a ANSI/ASME con casquillos roscados (NPT) o socket weld (SW), cuerpo de acero fundido/acero inoxidable, componentes internos (trim) y fuelle de acero inoxidable,
			con bonete atornillado, rosca del vástago externa y estribo, cierre mediante empaquetadura del prensaestopas de grafito y fuelle metálico, anillos de estanqueidad de acero inoxidable/ grafito. Aplicaciones
			Instalaciones petroquímicas, instalaciones químicas, centrales de energía, ingeniería de procesos y aplicaciones de la industria general; para aceite térmico, vapor y fluidos tóxicos y volátiles. Otros fluidos previa solicitud.
m, e			https://www.ksb.com/es-es/lc/E20A

ECOLINE GTC 150-600

Class NPS [pulg.] T [°C]

150 - 600 Descripción 2 - 24

≥ 0 - ≤ +649

Válvula de compuerta conforme a ANSI/ASME con bridas, fundición de acero A216 WCB, Trim 8 (estelita/ acero al 13 % de cromo) para la clase 150/300/600, Trim 5 (estelita/ estelita) para la clase 600, con bonete atornillado, rosca del vástago externa y estribo, vástago no giratorio, cuña articulada, empaquetadura de prensaestopas de grafito, anillos de estanqueidad de acero inoxidable/ grafito.

Aplicaciones

Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones navales; para aqua, vapor, gas, aceite y otros fluidos no agresivos.

https://www.ksb.com/es-es/lc/F59A

ECOLINE GTF 150-600

NPS [pulg.] T [°C]

150 - 600

≥ 0 - ≤ +816

Descripción 1/2 - 2

Válvula de compuerta conforme a ANSI/ASME con bridas, acero forjado A105, Trim 8 (estelita/ acero al 13 % cromo), con bonete atornillado, rosca del vástago externa y estribo, vástago no giratorio, cuña monobloc, empaquetadura de prensaestopas de grafito, anillos de estanqueidad de acero inoxidable/

Aplicaciones

Aplicaciones de la industria, centrales eléctricas, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones navales; para agua, vapor, gas, aceite y otros fluidos no agresivos.

m, e

https://www.ksb.com/es-es/lc/EF6A

ECOLINE GTF 800

NPS [pulg.] T [°C]

1/2 - 2

≥ 0 - ≤ +593

800 Descripción

Válvula de compuerta conforme a ANSI/ASME con casquillos roscados (NPT), extremos para soldar (BW) o socket weld (SW), Trim 8 (estelita/ acero al 13 % de cromo), con bonete atornillado, rosca del vástago externa y estribo, cuña monobloc, empaquetadura de prensaestopas de grafito, anillos de estanqueidad de acero inoxidable/ grafito, disponible en acero al carbono y acero aleado.

Aplicaciones de la industria, centrales eléctricas, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones navales; para agua, vapor, gas, aceite y otros fluidos no agresivos.

m, e

https://www.ksb.com/es-es/lc/E61A

ECOLINE GTV 150-300

Class NPS [pulg.] T [°C]

2 - 12

 \geq -29 - \leq +427

150 - 300 Descripción

Válvula de compuerta conforme a ANSI/ASME con bridas, fundición de acero A216 WCB, A351 CF8/ CF8M/CN7M, Trim 2/8/10/13 para la clase 150/300, con bonete atornillado, rosca del vástago externa y estribo, vástago no giratorio, cuña articulada, empaquetadura de prensaestopas de grafito, anillo de estanqueidad de acero inoxidable/grafito.

Aplicaciones

. Química especializada, industria alimentaria, industria en general; agua, vapor, gas y otros fluidos.

SICCA 150-600 GTC

Class NPS [pulg.] T [°C]

150 - 600 2 - 24 ≥ 0 - ≤ +593

Descripción

Válvula de compuerta conforme a ANSI/ASME con bridas o extremos para soldar, con bonete atornillado, rosca del vástago externa y estribo, cuña articulada, vástago ascendente, volante manual no ascendente, superficies estancas de acero al 13 % de cromo con blindaje de estelita, con anillo de estanqueidad de grafito y empaquetadura de prensaestopas, disponible en acero al carbono, acero de baja aleación y acero inoxidable.

Aplicaciones

Centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.

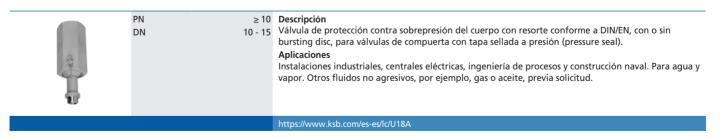
т. е

SICCA 900-3600 GTC

ALCO LANC	Class NPS [pulg.] T [°C]	Descripción Válvula de compuerta conforme a ANSI/ASME con extremos butt end, tapa sellada a presión (pressure seal), cuña bipieza, roscado exterior del vástago y estribo, vástago ascendente y volante manual no ascendente, superficie de contacto asiento/ obturador y asiento posterior blindados con estelita, con anillo de estanqueidad de grafito y empaquetadura de prensaestopas; disponible en acero al carbono y acero aleado. Aplicaciones Centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
m, e		https://www.ksb.com/es-es/lc/S83A

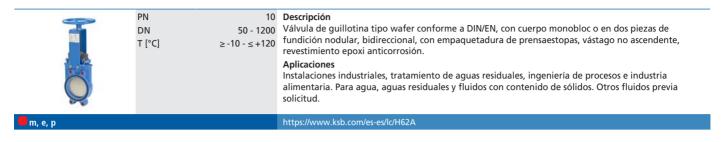
SICCA 150-2500 GTF

10/79611	Class NPS [pulg.] T [°C]	Descripción Válvula de compuerta conforme a ANSI/ASME con casquillos roscados NPT (F) o manguitos soldados, o brida de fundición integral (clase 150-600) con bonete atornillado (clase 150-800) o tapa soldada (clase 1500/2500), cuña monobloc, rosca del vástago externa y estribo, superficies estancas de acero al 13 % de cromo con blindaje de estelita, con anillos de estanqueidad y empaquetadura del prensaestopas de grafito; disponible en acero al carbono, acero de baja aleación y acero inoxidable. Aplicaciones Refinerías, centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
m, e		https://www.ksb.com/es-es/lc/S79A


Válvulas de compuerta para aplicaciones nucleares

ZTN

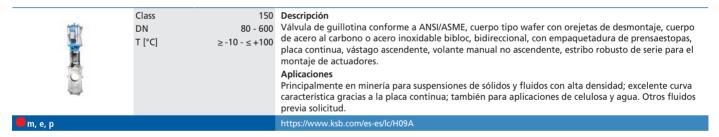
	PN DN T [°C]	80 - 700	Descripción Válvula de compuerta con extremos butt end para aplicaciones nucleares, con bonete atornillado o tapa sellada a presión (pressure seal), cuerpo forjado o soldado, vástago no giratorio, con placas de cuña o placas paralelas, de acero o acero inoxidable. Aplicaciones Sistemas de refrigeración del reactor, sistemas de alimentación de seguridad, sistemas de agua de alimentación, sistemas de vapor vivo, sistemas de limpieza y sistemas de condensados.
m , e, p			https://www.ksb.com/es-es/lc/Z14A


Válvulas de protección contra sobrepresión del cuerpo

UGS

Válvulas de guillotina conforme a DIN/EN

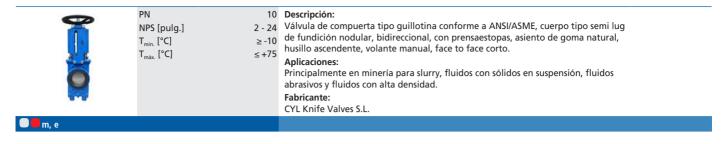
HERA-BD

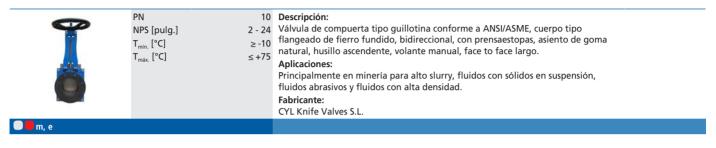


Válvulas de guillotina conforme a ANSI/ASME

HERA-BDS

0		Class DN T [°C]	50 - 600	Descripción Válvula de guillotina conforme a ANSI/ASME, cuerpo tipo lug de acero al carbono o acero inoxidable, bidireccional, con empaquetadura de prensaestopas, revestimiento elástico, vástago ascendente, volante manual no ascendente.
	0			Aplicaciones Principalmente en minería para suspensiones de fluidos con sólidos, fluidos abrasivos y fluidos con alta densidad; igualmente para aplicaciones con celulosa, plantas de cemento, plantas de tratamiento de aguas residuales e industria química. Otros fluidos previa solicitud.
m , e, p				https://www.ksb.com/es-es/lc/H10A


HERA-BHT

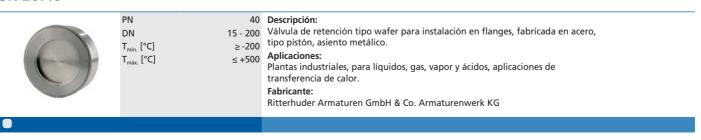

HERA-SH

	Class DN T [°C]	50 - 1000	Descripción Válvula de guillotina conforme a ANSI/ASME, cuerpo tipo lug de acero al carbono o acero inoxidable, monobloc, unidireccional, con empaquetadura de prensaestopas, vástago ascendente, volante manual no ascendente. Aplicaciones Instalaciones industriales y tratamiento de aguas residuales, industria de la celulosa y del papel, industria de alimentos y bebidas, industria química. Para agua, aguas residuales y fluidos con contenido de sólidos. Otros fluidos previa solicitud.
m, e, p			https://www.ksb.com/es-es/lc/HB5A

CYL SK

CYL SL

Válvulas de retención conforme a DIN/EN


BOA-RPL/RPL F-F

PN DN T [°C]	25 - 400 ≥ -10 - ≤ +70	Válvula de retención de bola conforme a DIN/EN con bridas o extremos roscados hembra/hembra, de
		https://www.ksb.com/es-es/lc/B44A

BOA-RFV

PN DN T [°C]	10/16/25/40/63 40 - 600 ≥ -10 - ≤ +90	Válvula de retención tipo tobera conforme a DIN/EN con bridas, cuerpo tipo Venturi, velocidad de
		https://www.ksb.com/es-es/lc/B43A

SR 20.40

Válvulas

BOA-RVK

PN 6/10/16
DN 15 - 200
T [°C] ≥ -20 - ≤ +250

Xálvula de retención tipo wafer conforme a DIN/EN, centrado a través del cuerpo, cierre de placa u obturador accionados por resorte, guiado de la placa o del obturador entre 3 pernos de acero inoxidable, variante con bajo nivel de ruido con placa de plástico (DN 15-100) u obturador con junta tórica (DN 125-200), sin mantenimiento.

Aplicaciones
Instalaciones industriales y sistemas de calefacción, líquidos y gases, sistemas de calefacción por agua caliente, sistemas de calefacción por agua sobrecalentada, sistemas de transferencia térmica. Hay que considerar las posibles restricciones de uso a causa de los reglamentos técnicos en vigor. No apta para fluidos que ataquen los materiales empleados. Otros fluidos previa solicitud.

BOA-R

PN 6/16 Descripción

DN 15 - 350 Válvula de retención conforme a DIN/EN con bridas, obturador con resorte, sin mantenimiento.

T [°C] ≥-10 - ≤ +350 Aplicaciones

Sistemas de calefacción por agua sobrecalentada y sistemas de transferencia térmica. Aplicaciones de vapor en general en edificación e industria. Otros fluidos

https://www.ksh.com/es-es/lc/R10

ECOLINE RA16

PN 16 Descripción:

DN 15 - 200 Válvula de retención, paso recto, con asiento metálico, fabricada en fierro fundido.

T_{min.} [°C] ≥ -10 Con flanges DIN PN 16.

T_{máx.} [°C] ≤ +300 Aplicaciones:
Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua.

ECOLINE RA40

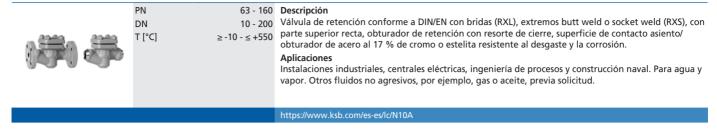
PN 40 Descripción:

DN 15 - 200 Válvula de retención, paso recto, con asiento metálico, fabricada en acero fundido.

T_{min.} [°C] ≥ -10 Con flanges DIN PN 40.

T_{máx.} [°C] ≤ +400 Aplicaciones:
Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua.

NORI 40 RXL/RXS


PN 25/40 Descripción

10 - 300 Válvula de retención conforme a DIN/EN con bridas (RXL), extremos butt weld o socket end (RXS), con

T [°C] ≥-10 - ≤ +450 parte superior recta, obturador de retención con resorte de cierre, superficie de contacto asiento/
obturador de acero al cromo o acero al cromo níquel resistente al desgaste y la corrosión.

Aplicaciones
Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

NORI 160 RXL/RXS

RGS

	PN	250 - 500	Descripción
1000	DN	10 - 50	
	T [°C]	≥ -10 - ≤ +580	inclinada, obturador de retención con resorte de cierre, tapa sellada a presión (pressure seal), superficies estancas del cuerpo con blindaje de Hastelloy. Aplicaciones Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.
			https://www.ksb.com/es-es/lc/R01A
			https://www.ksb.com/es-es/lc/R01A

BOACHEM-RXA

DN 15	40 Descripción Válvula de retención conforme a DIN/EN con bridas, cuerpo de acero inoxidable, parte superior recta, obturador de retención con resorte de cierre, superficie de contacto asiento/ obturador lapeada. Aplicaciones Ingeniería de procesos, industria, edificación, industria alimentaria y de bebidas, para fluidos agresivos. Otros fluidos previa solicitud.
	https://www.ksb.com/es-es/lc/B37B

Válvulas de retención conforme a ANSI/ASME

ECOLINE PTF 150-600

Tesas	Class NPS [pulg.] T [°C]	½ - 2 ≥ 0 - ≤ +816	Descripción Válvula de retención conforme a ANSI/ASME con bridas, acero forjado A105, Trim 8 (estelita/ acero al 13 % de cromo), de paso reducido, con bonete atornillado y obturador de resorte. Aplicaciones Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones marinas; para agua, vapor, gas, aceite y otros fluidos no agresivos.
			https://www.ksb.com/es-es/lc/E63A

ECOLINE PTF 800

Class NPS [pulg.] T [°C]	800 ½ - 2 ≥ 0 - ≤ +593	Descripción Válvula de retención conforme a ANSI/ASME con casquillos roscados (NPT), extremos butt weld (BW) o socket weld (SW), Trim 8 (estelita/ acero al 13 % de cromo), con brida de tapa y obturador de resorte; disponible en acero al carbono y acero aleado. Aplicaciones Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones marinas; para agua, vapor, gas, aceite y otros fluidos no agresivos.
		https://www.ksb.com/es-es/lc/E64A

53

SICCA 150-4500 PCF

Class NPS [pulg.] T [°C] 150 - 4500 Descripción

¼ - 2½
 ≥ 0 - ≤ +816
 Descripción Válvula de retención conforme a ANSI/ASME con casquillos roscados (NPT), extremos butt weld (BW) o socket weld (SW) o brida de fundición integral (clase 150-600), Trim 8 (estelita/acero al 13 % de cromo), con bonete atornillado (clase 150-800) o tapa soldada (clase 1500/2500/4500), obturador de retención con resorte, disponible en acero al carbono, acero de baja aleación y acero inoxidable.

Aplicaciones

refinerías, centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.

https://www.ksb.com/es-es/lc/S81A

Válvulas de retención para aplicaciones nucleares

≥ -29 - ≤ +365

Válvulas de retención NUCA

PN DN T [°C]

≤ 210 **Descr**i

Válvula de retención con extremos butt weld o socket weld para aplicaciones nucleares, asiento intercambiable (NUCA-ES), parte superior recta y paso directo, de acero o acero inoxidable.

Aplicaciones

Sistemas de refrigeración del reactor, sistemas de moderador nuclear, sistemas de alimentación de seguridad, sistemas de agua de alimentación, sistemas de vapor vivo y sistemas de limpieza.

https://www.ksb.com/es-es/lc/N74A

RJN

PN DN T [°C]

≤ 140 80 - 600 ≥ -29 - ≤ +300

≤ 140 Descripción

Válvula de retención amortiguada con extremos butt weld para aplicaciones nucleares, características de amortiguación modificables de forma individual, de acero o acero inoxidable.

Aplicaciones

Sistemas de agua de alimentación y de vapor vivo.

RYN

PN DN T [°C] ≤ 210 65 - 300

≥ -29 - ≤ +365

≤210 Descripción

Válvula de retención con extremos butt weld para aplicaciones nucleares, con función de cierre, parte superior inclinada, empaquetadura de prensaestopas o fuelle, de acero o acero inoxidable.

Aplicaciones

Sistemas de agua de alimentación y de vapor vivo.

https://www.ksb.com/es-es/lc/R67A

Válvulas de retención de clapeta conforme a DIN/EN

ECOLINE CTGM NG

DN $T_{min.}$ [°C] T_{máx.} [°C] 10/16 Descripción:

50 - 300 Válvula de retención de clapeta revestida en goma. Bridas según normas EN. Cuerpo de fundición nodular, con disco de comprobación recubierto de NBR. ≥ -10

Bonete atornillado, tapón de vaciado; fácil reemplazo de clapeta. ≤+70

Sistemas de abastecimiento de agua y aplicaciones de aguas residuales.

ECOLINE WT/WTI

DN T [°C]

 \geq -10 - \leq +110

16 Descripción

50 - 300 Válvula de retención de clapeta conforme a DIN/EN con cuerpo anular; cuerpo y mariposa de acero al carbono (WT) o acero inoxidable (WTI), junta tórica de Viton.

Aplicaciones

Sistemas de regadio, sistemas urbanos de calefacción, suministro de aguas domésticas, plantas de tratamiento de aguas residuales, instalaciones de climatización, circuitos de refrigeración, instalaciones de abastecimiento de agua.

https://www.ksb.com/es-es/lc/E80A

STAAL 40 AKK/AKKS

T [°C]

 \geq -10 - \leq +450

10 - 40 Descripción

Válvula de retención de clapeta conforme a DIN/EN con bridas (AKK) o extremos butt weld (AKKS), con bonete atornillado, eje interior, cuerpo soldado, superficie de contacto asiento/ obturador de acero al 17 % de cromo resistente al desgaste y la corrosión.

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

STAAL 100 AKK/AKKS

ΡN DN T [°C]

80 - 400 ≥ -10 - ≤ +530

63 - 100 Descripción

Válvula de retención de clapeta conforme a DIN/EN con bridas (AKK) o extremos butt weld (AKKS). con bonete atornillado, eje interior, cuerpo forjado o soldado, superficie de contacto asiento/ obturador de acero al 17 % de cromo o estelita resistente al desgaste y la corrosión.

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

https://www.ksb.com/es-es/lc/S36A

AKR/AKRS

PΝ DN T [°C]

80 - 300 > -10 - < +550

Válvula de retención de clapeta conforme a DIN/EN con bridas (AKR) o extremos butt weld (AKRS), con tapa sellada a presión (pressure seal), eje interior, cuerpo forjado y soldado, superficie de contacto asiento/obturador de acero al 17 % de cromo o estelita resistente al desgaste y la corrosión.

Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

Válvulas

ZRS

PN \leq 600 DN 50 - 800 T [°C] \geq -10 - \leq +650

Descripción

Válvula de retención de clapeta conforme a DIN/EN con extremos butt weld, con tapa sellada a presión (pressure seal), eje interior, cuerpo forjado monobloc, superficie de contacto asiento/ obturador de estelita resistente al desgaste y a la corrosión.

Aplicaciones

instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.

https://www.ksb.com/es-es/lc/Z01A

SISTO-RSK/RSKS

PN 16 DN 25 - 300 T [°C] \geq -20 - \leq +140

16 Descripción

25 - 300 Válvula de retención conforme a DIN/EN con bridas, en paso recto y con paso libre, carcasa con recubrimiento o revestimiento, cierre en modelo de asiento inclinado, cierre estático hacia el exterior, válvula de mariposa pretensada y revestida de elastómero con carrera de cierre corta.

Aplicaciones

Edificación, industria y centrales eléctricas para agua potable, agua de servicio, fluidos en la industria alimentaria, productos abrasivos y agresivos en ingeniería química y de procesos.

https://www.ksb.com/es-es/lc/S65/

SERIE 2000

PN 16 Class 150/300 DN 50 - 600 T [°C] \geq -196 - \leq +538

16 Descripción

Válvula de retención de doble clapeta tipo wafer, cuerpo monobloc de fundición con grafito laminar, fundición nodular, acero o acero inoxidable, cierre del eje de metal-elastómero o de metal-metal, sin mantenimiento, conexiones según EN, ASME o JIS.

Aplicaciones

Edificación: calefacción, instalaciones de climatización, abastecimiento de agua, riego, tratamiento de aguas. Servicios generales: agua, aire, gas. Ingeniería de procesos en la industria química y petroquímica, industria azucarera, industria papelera, desalación. Aplicaciones marinas con agua, aire, gas, hidrocarburos.

https://www.ksb.com/es-es/lc/S51A

Válvulas de retención de clapeta conforme a ANSI/ASME

ECOLINE DC 125

Clase NPS [pulg.] T_{mín.} [°C] T_{máx.} [°C] 125 Descripción:

2 - 24 Válvula de retención de doble clapeta, tipo wafer, fabricada en fierro fundido o
≥ -20 fundición nodular, con asiento elastomérico. Para conexión entre flanges ANSI
clases 125.
≤ +120

Aplicaciones:

Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua.

Fabricante: Sigma Valves

ECOLINE DC 150

Clase NPS [pulg.] T_{min.} [°C] T_{máx.} [°C] 150 Descripción:

≤ +538

2 - 24 Válvula de retención de doble clapeta, tipo wafer, fabricada en acero o acero inoxidable, con asiento elastomérico o metálico. Para conexión entre flanges ANSI clases 150.

Aplicaciones:

Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua, aplicaciones industriales.

Fabricante:

Sigma Valves

ECOLINE DC 300

Clase NPS [pulg.] T_{mín.} [°C] T_{máx.} [°C] ≤ +538

300 Descripción:

Válvula de retención de doble clapeta, tipo wafer, fabricada en acero o acero 2 - 24 inoxidable, con asiento elastomérico o metálico. Para conexión entre flanges ANSI ≥ -20 clases 300.

Aplicaciones:

Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua, aplicaciones industriales.

Fabricante:

Sigma Valves

ECOLINE SCC 150-600

NPS [pulg.] T [°C]

≥ 0 - ≤ +816

150 - 600 Descripción

2 - 24 Válvula de retención de clapeta conforme a ANSI/ASME con bridas, fundición de acero A216 WCB, Trim 8 (estelita/ acero al 13 % de cromo) para la clase 150/300/600, Trim 5 (estelita/ estelita) para la clase 600, con bonete atornillado, eje interior (2"-12") y anillos de estanqueidad de acero inoxidable/

Aplicaciones

Refinerías, centrales eléctricas, ingeniería de procesos e industria en general; agua, vapor, aceite, gas. Otros fluidos previa solicitud.

https://www.ksb.com/es-es/lc/E68A

ECOLINE SCF 150-600

NPS [pulg.] T [°C]

1/2 - 2 Válvula de retención de clapeta conforme a ANSI/ASME con bridas, acero forjado A105, Trim 8 (estelita/ acero al 13 % de cromo), de paso reducido, con bonete atornillado y eje interior. $\geq 0 - \leq +816$

Aplicaciones

Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones marinas; para agua, vapor, gas, aceite y otros fluidos no agresivos.

ECOLINE SCF 800

NPS [pulg.] T [°C]

1/2 - 2 ≥ 0 - ≤ +593

Válvula de retención de clapeta conforme a ANSI/ASME con casquillos roscados (NPT), extremos butt weld (BW) o socket weld (SW), Trim 8 (estelita/ acero al 13 % de cromo), con bonete atornillado (clase 800) o tapa sellada (clase 1500 y 2500) y eje interior; disponible en acero al carbono y acero aleado.

Aplicaciones

Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones marinas; para agua, vapor, gas, aceite y otros fluidos no agresivos.

https://www.ksb.com/es-es/lc/E70A

ECOLINE SCV 150-300

Class NPS [pulg.] T [°C]

 \geq -29 - \leq +427

150 - 300 Descripción

2 - 12

Válvula de retención de clapeta conforme a ANSI/ASME con bridas, fundición de acero A216 WCB, A351 CF8/CF8M/CN7M, Trim 2/8/10/13 para la clase 150/300, con bonete atornillado, anillo de estanqueidad de acero inoxidable/grafito.

Aplicaciones

Química especializada, industria alimentaria e industria en general. Para agua, vapor, gas y otros fluidos. Otros fluidos previa solicitud.

https://www.ksb.com/es-es/lc/EF4B

Válvulas 57

SICCA 150-600 SCC

Class	150 - 600	Descripción
NPS [pulg.]	2 - 24	Válvula de retención conforme a ANSI/ASME con extremos embridados o butt weld, con bonete
T [°C]	≥ 0 - ≤ +593	atornillado. Eje interior apoyado en consolas (diámetros nominales hasta NPS 12) o eje montado en la carcasa (diámetros nominales superiores a NPS 12). Opcionalmente, diámetros nominales más grandes con dispositivo antigolpes/función de amortiguación, juntas de grafito. Superficies estancas en un 13 % de acero al cromo con estelitizado, disponibles en acero al carbono, acero de baja aleación y acero inoxidable. Aplicaciones Centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y
		otros fluidos no agresivos. Otros fluidos previa solicitud.

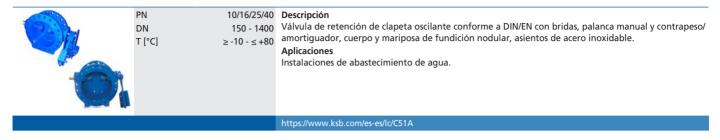
SICCA 900-3600 SCC

Class NPS [pulg.] T [°C]	2 - 28	Descripción Válvula de retención de clapeta conforme a ANSI/ASME con extremos butt weld, tapa sellada a presión (pressure seal), eje interior, superficies estancas reforzadas por estelita, con anillo de estanqueidad de grafito; disponible en acero al carbono y acero aleado. Aplicaciones Centrales de energía, industria en general e ingeniería de procesos. Para agua, vapor, aceite, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
		https://www.ksb.com/es-es/lc/S84A

Válvulas de retención de clapeta para aplicaciones nucleares

SISTO-RSKNA

PN DN T [°C]	16 25 - 300 ≥ -20 - ≤ +100	
		https://www.ksb.com/es-es/lc/S52A


ZRN

PN	≤ 210	Descripción
DN	80 - 700	Válvula de retención de clapeta para aplicaciones nucleares con extremos butt weld, bonete
T [°C]	≥ -29 - ≤ +365	atornillado, eje interior, cuerpo forjado, de acero o acero inoxidable.
		Aplicaciones
		Sistemas de alimentación de seguridad, sistemas de agua de alimentación, sistemas de vapor vivo y sistemas de condensados.

Válvulas de retención de clapeta oscilante conforme a DIN/EN

COBRA-TDC01/03

Filtro conforme a DIN/EN

BOA-S

PN DN T [°C]	15 - 400	Descripción Filtro conforme a DIN/EN con bridas, con tamiz estándar o fina, tapa con purgador (todos los DN), de fundición gris o fundición nodular. Aplicaciones Sistemas de calefacción por agua caliente, sistemas de calefacción por agua sobrecalentada y sistemas de transferencia térmica. Aplicaciones de vapor en general en edificación e industria. Otros fluidos previa solicitud.
		https://www.ksb.com/es-es/lc/B09A

NORI 40 FSL/FSS

	PN DN T [°C]	15 - 300	Descripción Filtro conforme a DIN/EN con bridas (FSL) o extremos butt weld (FSS) de fundición de acero, con tamiz estándar o fino; todos los diámetros nominales con purgador en la tapa, opcionalmente con uso de solenoide. Aplicaciones Instalaciones de transferencia térmica, instalaciones industriales, edificación y construcción naval. Para aceite térmico, agua, vapor, gas y otros fluidos no agresivos. Otros fluidos previa solicitud.
			https://www.ksb.com/es-es/lc/N33A

BOACHEM-FSA

PN DN T [°C] ≥-10	15 - 400) - ≤ +400	Descripción Filtro conforme a DIN/EN con bridas, cuerpo de acero inoxidable, tamiz estándar o fino; todos los diámetros nominales con purgador en la tapa. Aplicaciones Ingeniería de procesos, industria, edificación, industria alimentaria y de bebidas, para fluidos agresivos. Otros fluidos previa solicitud.
		https://www.ksb.com/es-es/lc/B36B

Filtro Y PN 16

PN	16	Descripción:
DN	50 - 300	Filtro tipo "Y" con filtro de acero inoxidable, fabricada en fierro fundido, con
T _{min.} [°C]	≥ -10	
T _{máx.} [°C]	≤ +300	
1102.		Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua, aplicaciones industriales.
		Fabricante:
		EJ Industry Group Co., Ltd.

Filtros conforme a ANSI/ASME

ECOLINE FYC 150-600

Class	150 - 600	Descripción
NPS [pulg.]		Filtro en Y, conforme a ANSI/ASME, con bridas, bonete atornillado, acero fundido A216 WCB, tamiz de
T [°C]	≥ 0 - ≤ +816	acero inoxidable 304, abertura de malla 1,5 mm.
		Aplicaciones
		Refinerías, centrales eléctricas, ingeniería de procesos e industria en general; agua, vapor, aceite, gas. Otros fluidos previa solicitud.

https://www.ksh.com/es-es/lc/F53/

ECOLINE FYF 800

	Class	800	Descripcion
	NPS [pulg.]		Filtro en Y, conforme a ANSI/ASME, con extremos threated socket (NPT) o socket weld (SW), con
T [°C] ≥ 0 - ≤ +816	≥ 0 - ≤ +816	bonete atornillado, acero forjado A105, tamiz de acero inoxidable 304. Abertura de malla de 0,8 a 0,9 mm.	
			Aplicaciones Instalaciones industriales, centrales de energía, ingeniería de procesos, refinerías, industria del petróleo y aplicaciones marinas; para agua, vapor, gas, aceite y otros fluidos no agresivos.

Válvulas de mariposa de eje centrado

BOAX-CBV13

PN	10/16	Descripción
DN	50 - 1200	Válvula de mariposa de eje centrado con revestimiento de epoxi, total estanqueidad en ambas
T [°C]	≥ -10 - ≤ +70	mariposa de acero inoxidable.
		Aplicaciones
		Cierre y regulación, agua potable, agua de mar, instalaciones de abastecimiento de agua, sistemas de tratamiento y distribución de agua, aguas residuales, regadío, agua extrapura, aire, aceite.
		https://www.ksb.com/es-es/lc/B49A

BOAX-S/SF

PΝ DN 20 - 600 T [°C] ≥ -10 - ≤ +130

6/10/16 Descripción

Válvula de mariposa de eje centrado con extremo del eje cuadrado conforme a ISO 5211 para válvulas de mariposa a partir de DN 350, con barrera térmica, anillo de elastómero (EPDM XU o nitrilo K), palanca manual, engranaje reductor manual o actuador eléctrico (BOAXMAT-S y BOAXMAT-SF), cuerpo con orejetas de desmontaje (T2) o tipo lug (T4) para desmontaje aguas abajo y función de válvula final de línea, mariposa de acero inoxidable 1.4308, conexiones según EN.

Aplicaciones

Edificación, calefacción, ventilación, instalaciones de climatización, para agua potable.

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

https://www.ksb.com/es-es/lc/B12A

BOAX-B

PN DN T [°C] ≥ -10 - ≤ +110

10/16 Descripción

40 - 1000 Válvula de mariposa de eje centrado con extremo del eje cuadrado conforme a ISO 5211, estanqueidad con anillo de elastómero (EPDM XC / XU o nitrilo K), con palanca manual, engranaje reductor manual, actuador neumático o eléctrico, cuerpo con orejetas de desmontaje (T2) o tipo lug (T4). Los tipos de cuerpo T2 y T4 permiten el desmontaje aguas abajo y el uso como válvula de final de línea. Mariposa de fundición nodular o acero inoxidable. Conexiones según EN.

Aplicaciones

Ingeniería de plantas. Circuitos de agua en general, circuitos de calentamiento por aceite, circuitos de aceite. Sistemas de cierre y regulación en sectores de abastecimiento y tratamiento de aguas, drenaje y riegos

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

ISORIA 10/16

ΡN DN T [°C]

40 - 1000 \geq -10 - \leq +200

10/16 Descripción

Válvula de mariposa de eje centrado con extremo del eje cuadrado conforme a ISO 5211, con anillo de elastómero, palanca manual o engranaje reductor manual, actuador neumático, eléctrico o hidráulico; cuerpo anular (T1), cuerpo con orejetas de desmontaje (T2), cuerpo tipo lug (T4) o cuerpo en forma de perfil en U con cara plana (T5). Los tipos de cuerpo T2 y T4 permiten el desmontaje aquas abajo y el uso como válvula de final de línea con una contrabrida. Conexiones según EN, ASME, JIS.

Cierre y regulación en todos los sectores de industria y energía.

m, e, h, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

https://www.ksb.com/es-es/lc/I00A

ISORIA 20/25

ΡN DN T [°C]

32 - 1000 ≥ -10 - ≤ +200

20/25 Descripción

Válvula de mariposa de eje centrado con extremo del eje cuadrado conforme a ISO 5211, con anillo de elastómero, palanca manual o engranaie reductor manual, actuador neumático, eléctrico o hidráulico: cuerpo anular (T1), cuerpo con orejetas de desmontaje (T2), cuerpo tipo lug (T4) o cuerpo en forma de perfil en U con cara plana (T5). Los tipos de cuerpo T2, T4 y T5 permiten el desmontaje aguas abajo y el uso como válvula de final de línea con una contrabrida. Conexiones según EN, ASME, JIS,

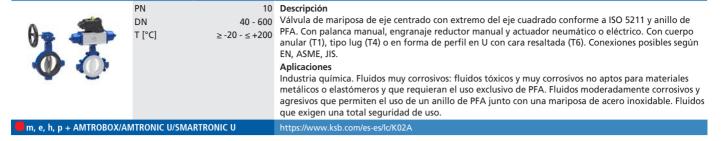
Aplicaciones

Cierre y regulación en todos los sectores de industria y energía.

m, e, h, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

MAMMOUTH

ΡN DN T [°C] 6/10/16/20/25 1050 - 4000 $\geq 0 - \leq +80$


Válvula de mariposa de eje centrado, con anillo de elastómero, reductor manual, actuador eléctrico o hidráulico o con contrapeso; cuerpo en forma de perfil en U con cara plana (T5). Conexiones según EN, ASME o JIS.

Aplicaciones

Abastecimiento y tratamiento de aguas, riego, drenaie, desalación (ósmosis, multiflash), industria, Circuitos de refrigeración y protección contra incendios. Astilleros, industria del acero y centrales eléctricas (hidráulicas, térmicas y nucleares). Cierre y regulación en todos los sectores de la industria.

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

KE

Válvulas de mariposa de doble excentricidad

APORIS-DEB02

	PN DN T [°C]	10/16/25/40 100 - 2200 ≥ -10 - ≤ +80	Descripción Válvula de mariposa de doble excentricidad, con recubrimiento epoxi, total estanqueidad en ambas direcciones del flujo, conexión embridada conforme a las normas EN, cuerpo y mariposa de fundición nodular. Aplicaciones Cierre o regulación, agua potable, agua de mar, aire, aguas.
<mark>=</mark> m, e, p			https://www.ksb.com/es-es/lc/A80A

DANAÏS 150

	PN ≤ 25 Class 150 DN 50 - 1200 T [°C] ≥ -50 - ≤ +260	Válvula de mariposa de doble excentricidad con extremo del eje cuadrado conforme a ISO 5211, asiento de plastómero (también en ejecución ignífuga), metálico o de elastómero (FKM [VITON R] o
m, e, h, p + AMTROBOX/AM	ITRONIC U/SMARTRONIC U	https://www.ksb.com/es-es/lc/D01A

DANAÏS MTII

	PN	25/50	Descripción
	Class	150/300	
	DN	50 - 600	asiento de plastómero o metálico (ignífugo), sin empaquetadura del prensaestopas, sin
	T [°C] ≥ -50 - ≤ +260	mantenimiento, con palanca manual o engranaje reductor; actuador neumático, eléctrico o hidráulico; cuerpo de acero o acero inoxidable. Cuerpo anular (T1), cuerpo tipo lug (T4), cuerpo con bridas (T7) con caras planas o resaltadas. Los tipos de cuerpo T4 y T7 permiten el uso como válvula de final de línea. Conexiones según EN, ASME o JIS. Certificación conforme a TA-Luft.	
•			Aplicaciones Petróleo, gas, química, petroquímica, centrales nucleares, instalaciones terrestres y marítimas; vapor, vacío y toda aplicación que requiera el uso de una válvula de mariposa excéntrica; gases industriales (sistemas de separación de aire, GOX y LOX).
m, e, h, p + AMTROBOX/AMTRONIC U/SMARTRONIC U			https://www.ksb.com/es-es/lc/D02A

DANAÏS CRYO

PN Class DN T [°C] ≥ -253 - ≤ +200

≤ 25 Descripción

150 Válvula de mariposa de doble excentricidad para aplicaciones criogénicas, cuerpo con bridas (T7) con 80 - 1200 cara resaltada, cuerpo con extremos butt weld de acero inoxidable, ASME clase 150, JIS, certificación de seguridad fuego (fire-safe).

Aplicaciones

Gas natural licuado (GNL), para su uso en terminales de gas natural licuado y en parques de depósitos de gas licuado, para el transporte marítimo. Suministro de gas natural licuado, hidrógeno o amoniaco.

m, e, h, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

https://www.ksb.com/es-es/lc/D40A

DANAÏS CRYO AIR

Class DN T [°C] ≥ -253 - ≤ +200

10/16 Descripción

150 Válvula de mariposa excéntrica doble para aplicaciones criogénicas con carcasa anular (T1) o carcasa 50 - 600 con orejetas de bridas roscadas (T4).

Aplicaciones

Sistemas de separación de aire (nitrógeno, oxígeno, argón, etc.), hidrógeno, helio, Teisan Compact Nitrogen (TCN).

m, e, h, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

Eco HP 300

Clase NPS [pulg.] T_{mín.} [°C] T_{máx.} [°C]

≤ +180

2 - 24 Válvula de mariposa High Performance, de doble excentricidad, con cuerpo en ≥ -29 acero fundido o acero inoxidable tipo wafer (T1) o lug (T4), asiento en teflón. Flanges ANSI clase 300.

Aplicaciones:

. Agua, aceite, aire, gas o vapor en industria general, industria del azúcar, pulpa y papel y minería.

Fabricante:

Tiangong Valve Group Co., Ltd.

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

Eco HP 300T

Clase NPS [pulg.] $T_{min.}$ [°C] T_{máx.} [°C]

≥ -29

≤ +260

300 Descripción:

2 - 24 Válvula de mariposa High Performance, de triple excentricidad, con cuerpo en acero fundido o acero inoxidable tipo wafer (T1) o lug (T4), asiento metálico. Flanges ANSI clase 300.

Aplicaciones:

Agua, aceite, aire, gas o vapor en industria general, industria del azúcar, pulpa y papel y minería.

Fabricante:

Tiangong Valve Group Co., Ltd.

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

Válvulas de mariposa de triple excentricidad

TRIODIS 150

PN ≤ 25 Class 150 DN 50 - 1200 T [°C] ≥ -196 - ≤ +450

≤ 25 Descripción

Válvula de mariposa de triple excentricidad, de asiento metálico (seguridad fuego), sin empaquetadura del prensaestopas, sin mantenimiento, con palanca manual o engranaje reductor, actuador neumático, eléctrico o hidráulico. Cuerpo de acero o acero inoxidable, cuerpo tipo lug (T4), cuerpo con bridas (T7) con caras planas o resaltadas, cuerpo con extremos butt weld (BWSE). Los tipos de cuerpo T4 y T7 permiten el uso como válvula de final de línea. Conexiones según EN, ASME o JIS. Conexiones conforme a ASME: Schedule 10S, 10, STD y XS según NPS para válvulas con extremos butt weld (otras conexiones previa solicitud). Nivel de emisiones probado y certificado conforme a EN ISO 15848-1. Certificación conforme a TA Luft, ensayo y certificación de seguridad fuego conforme a EN ISO 10497 (BS 6755 – API 6FA). Modelo ATEX conforme a la directiva 2014/34/UE. Según NACE MR0175 / ISO 15156 y MR 0103.

Aplicaciones

Licuefacción de gas natural. Todo tipo de gases licuados. Transferencia térmica, aceite, gas, industria petroquímica, parques de depósitos, refinerías, instalaciones onshore y offshore.

m, e, h, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

https://www.ksb.com/es-es/lc/T09A

TRIODIS 300

PN ≤ 50 Class 300 DN 80 - 1200 T [°C] ≥ -196 - ≤ +450

Descripción

Válvula de mariposa de triple excentricidad, de asiento metálico (seguridad fuego), sin empaquetadura del prensaestopas, sin mantenimiento, con palanca manual o engranaje reductor, actuador neumático, eléctrico o hidráulico. Cuerpo de acero o acero inoxidable, cuerpo tipo lug (T4), cuerpo con bridas (T7) con caras planas o resaltadas, cuerpo con extremos butt weld (BWSE). Los tipos de cuerpo T4 y T7 permiten el uso como válvula de final de línea. Conexiones según EN, ASME o JIS. Conexiones conforme a ASME: Schedule 40S y STD según NPS para válvulas con extremos butt weld (otras conexiones previa solicitud). Nivel de emisiones probado y certificado conforme a EN ISO 15848-1. Certificación conforme a TA-Luft. Ensayo y certificación de seguridad fuego conforme a EN ISO 10497 (BS 6755 – API 6FA). Modelo ATEX conforme a la directiva 2014/34/UE. Según NACE MR0175 / ISO 15156 y MR 0103.

Aplicaciones

Licuefacción de gas natural. Todo tipo de gases licuados. Transferencia térmica, fluidos agresivos, aceite, gas, industria petroquímica, parques de depósitos, refinerías, instalaciones onshore y offshore.

m, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

nttps://www.ksb.com/es-es/lc/T11A

TRIODIS 600

 $\begin{array}{lll} PN & \leq 100 \\ Class & 600 \\ DN & 150 - 1000 \\ T \ [^{\circ}C] & \geq -196 - \leq +450 \end{array}$

≤ 100 Descripción

Válvula de mariposa de triple excentricidad, de asiento metálico (seguridad fuego), sin empaquetadura del prensaestopas, sin mantenimiento, con palanca manual o engranaje reductor, actuador neumático, eléctrico o hidráulico. Cuerpo de acero o acero inoxidable, cuerpo tipo lug (T4), cuerpo con bridas (T7) con caras planas o resaltadas. Los tipos de cuerpo T4 y T7 permiten el uso como válvula de final de línea. Conexiones según EN, ASME o JIS (otras conexiones previa solicitud). Nivel de emisiones probado y certificado conforme a EN ISO 15848-1. Certificación conforme a TA Luft. Ensayo y certificación de seguridad fuego conforme a BS 6775-2. Modelo ATEX conforme a la directiva 2014/34/UE. Según NACE MR0175 / ISO 15156 y MR 0103.

Aplicaciones

Licuefacción de gas natural. Todo tipo de gases licuados. Transferencia térmica, fluidos agresivos, aceite, gas, industria petroquímica, parques de depósitos, refinerías, instalaciones onshore y offshore.

m, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

https://www.ksb.com/es-es/lc/T12A

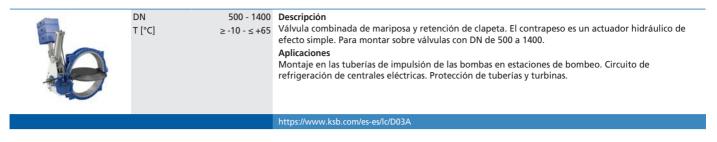
Válvulas de mariposa para aplicaciones nucleares

CLOSSIA

PN $\leq 5,5$ DN 250/500/750/1000 T [°C] $\geq -20 - \leq +170$

≤ 5,5 Descripción

Válvula de mariposa de doble excentricidad, con asiento metálico y sin mantenimiento. Cuerpo de acero con un extremo con bridas y el otro butt weld. Actuador de seguridad con accionamiento manual. neumático o eléctrico.

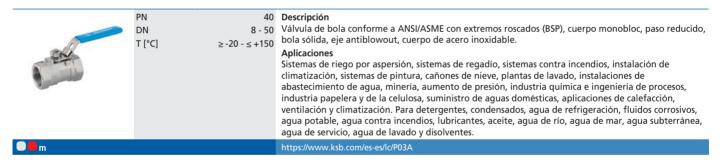

Aplicaciones

En la contención del reactor de centrales nucleares

m, e, p https://www.ksb.com/es-es/lc/C7

Válvula combinada de mariposa y retención

DUALIS



Válvulas de bola de una pieza

MP-CI/MP-II

	PN DN T [°C]	15 - 150	
m, p + AMTROBOX/AMTRONIC U			https://www.ksb.com/es-es/lc/M77A

PROFIN VT1

Válvulas de bola de dos piezas

ECOLINE BLT 150-300

	Class DN T [°C]	15 - 300	Válvula de bola conforme a ANSI/ASME con bridas, cuerpo de dos piezas, paso completo, bola
m , e, p			https://www.ksb.com/es-es/lc/E48A

Válvulas

PROFIN VT2L

PN DN T [°C]

40 Descripción 8 - 80

≥ -20 - ≤ +150

Válvula de bola conforme a ANSI/ASME con extremos roscados (BSP), cuerpo de dos piezas, paso completo, diseño antiestático, eje antiblowout, cuerpo de acero inoxidable.

Aplicaciones

Sistemas de riego por aspersión, sistemas de regadío, sistemas contra incendios, instalación de climatización, sistemas de pintura, cañones de nieve, plantas de lavado, instalaciones de abastecimiento de agua, minería, aumento de presión, industria química e ingeniería de procesos, industria papelera y de la celulosa, suministro de aguas domésticas, aplicaciones de calefacción, ventilación y climatización. Para detergentes, condensados, agua de refrigeración, fluidos corrosivos, aqua potable, aqua contra incendios, lubricantes, aceite, aqua de río, aqua de mar, aqua subterránea, agua de servicio, agua de lavado y disolventes.

PROFIN-VT2F

■ ■ m

Clase NPS [pulg.] $T_{min.}$ [°C] T_{máx.} [°C]

150 - 300 Descripción:

Válvula de bola de dos cuerpos, conexión con flanges ANSI clase 150 o 300, versión estándar y a prueba de fuego, fabricada en acero al carbono o acero inoxidable, ≥ -18 paso total, con vástago a prueba de explosión, y asiento en teflón PTFE o teflón ≤ **+204** reforzado RPTFE. Conexión superior ISO 5211 para acople de actuador neumático o

eléctrico mediante adaptador.

Aplicaciones:

Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua, aplicaciones industriales, Industria alimenticia, aplicaciones químicas, gas, petróleo, hidrocarburos

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

PROFIN-VT2F TF

Clase NPS [pulg.] T_{mín.} [°C] T_{máx.} [°C]

150 Descripción:

Válvula de bola de dos cuerpos, conexión con flanges ANSI clase 150 o 300, versión 1/2 - 12 estándar y a prueba de fuego, fabricada en acero al carbono o acero inoxidable, ≥ -18 paso total, con vástago a prueba de explosión, y asiento en teflón PTFE o teflón ≤ +204 reforzado RPTFE. Conexión superior ISO 5211 para acople de actuador neumático o eléctrico directo.

Aplicaciones:

Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua, aplicaciones industriales, Industria alimenticia, aplicaciones químicas, gas, petróleo, hidrocarburos.

m, e, p + AMTROBOX/AMTRONIC U/SMARTRONIC U

PROFIN-VT2H

Clase NPS [pulg.] T_{mín.} [°C] T_{máx.} [°C]

Descripción:

Válvula de bola de dos cuerpos, conexión NPT, fabricada en acero al carbono o $\frac{1}{4} - 2$ acero inoxidable, paso total, con vástago a prueba de explosión, y asiento en ≥ -29

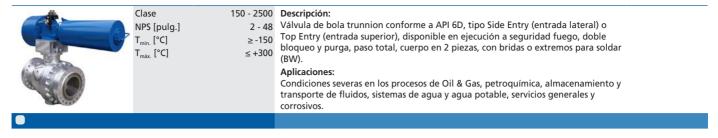
< +230

Aplicaciones:

Calefacción, aire acondicionado, circuitos de refrigeración, sistemas de agua caliente, sistemas de suministro de agua, aplicaciones industriales.

ECOLINE EST 150-600

NPS [pulg.] $T_{min.}$ [°C] $T_{máx.}$ [°C]

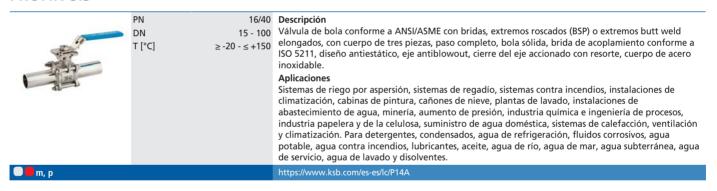

150 - 600

Válvula de bola trunnion conforme a API 6D doble bloqueo y purga, paso total o 2 - 24 reducido, cuerpo en 2 piezas, con conexión bridas. ≥ -27

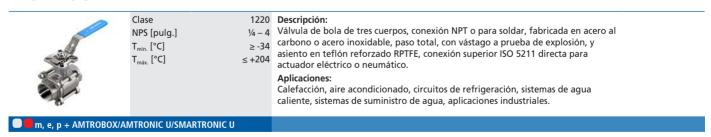
Aplicaciones: ≤ +200

Oil & gas, guímica, plantas de energía hidráulica y servicios generales.

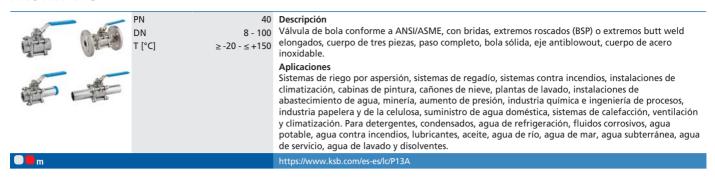
IVC-EST, -VET



Válvulas de bola de tres piezas


ECOLINE BLC 1000

	Class DN T [°C]	8 - 100	Descripción Válvula de bola conforme a ANSI/ASME con extremos roscados (NPT), extremos butt weld o socket weld, cuerpo de tres piezas, paso completo, bola flotante. Cierre de plastómero (también disponible en ejecución a seguridad fuego). Aplicaciones Industria en general, centrales eléctricas, industria química, industria petroquímica y todas las ramas relacionadas de la industria, industria papelera, industria alimentaria e industria farmacéutica.
m, p			https://www.ksb.com/es-es/lc/E47A


PROFIN SI3

PROFIN-SI3IT

PROFIN VT3

PROFIN-VT3 Gas

	NPS [pulg.] 1/4 – 2	Descripción: Válvula de bola de tres cuerpos, conexión NPT o para soldar, versión a prueba de fuego, fabricada en acero al carbono o acero inoxidable, paso total, con vástago a prueba de explosión, y asiento en POM. Aplicaciones: Industria alimenticia, aplicaciones químicas, gas, petróleo, hidrocarburos, aplicaciones industriales.
■■m		

Válvulas de diafragma con asiento elástico conforme a DIN/EN

SISTO-KB

J	PN 10 DN 15 - 200 T [°C] ≥ -20 - ≤ +140	Válvula de membrana conforme a DIN/EN con bridas, en paso recto, cierre en el paso y hacia el
m , e, p		https://www.ksb.com/es-es/lc/S47A

SISTO-16

	PN	16	Descripción
	DN	15 - 300	
	T [°C]	≥ -10 - ≤ +160	cierre en el paso y hacia el exterior a través de una membrana con apoyo y confinada, carcasa con recubrimiento o revestimiento, indicador de posición con protección integrada del husillo. Todos los componentes funcionales están fuera del fluido de operación; sin mantenimiento. Aplicaciones Edificación, industria y centrales eléctricas para agua potable, agua de servicio, aire, aceite, gases técnicos o fluidos en la industria alimentaria, productos abrasivos y agresivos en ingeniería química y de procesos.
m, e, p			https://www.ksb.com/es-es/lc/S40A

SISTO-16S

PN DN 15 - 200 T [°C] ≥ -20 - ≤ +160

16 Descripción Válvula de membrana conforme a DIN/EN con bridas, con longitud entre bridas corta, en paso recto, con cierre en el paso y hacia el exterior a través de una membrana con apoyo y confinada, carcasa con o sin revestimiento, indicador de posición con protección integrada del husillo. Todos los componentes funcionales están fuera del fluido de operación; sin mantenimiento.

Aplicaciones

Edificación, industria y centrales eléctricas para aqua potable, aqua de servicio, aire, aceite, gases técnicos o fluidos en la industria alimentaria, productos abrasivos y agresivos en ingeniería guímica y

https://www.ksb.com/es-es/lc/S42A m. e. p

SISTO-16RGAMaXX

ΡN 16 Descripción DN 15 - 80 T [°C] ≥ -10 - ≤ +90

Válvula de membrana conforme a DIN/EN con conexión de manguito roscado, en paso recto, carcasa de acero inoxidable para instalaciones de agua potable según DIN 1988, con certificación para agua DIN-DVGW de acuerdo con el ensayo W 270, cumple con las directrices UBA más recientes, cierre en el paso y hacia el exterior a través de una membrana SISTOMaXX con apoyo y confinada, indicador de posición con protección integrada del husillo. Todos los componentes funcionales están fuera del fluido de operación; sin mantenimiento.

Aplicaciones

Agua potable, especialmente en instalaciones de agua potable conforme a DIN 1988, agua de mar, agua industrial de cualquier tipo.

SISTO-16TWA

ΡN DN 15 - 200 T [°C] \geq -10 - \leq +140

16 Descripción

Válvula de membrana conforme a DIN/EN con bridas, en paso recto, para instalaciones de agua potable según DIN 1988, con certificación para agua DIN-DVGW de acuerdo con el ensayo W 270, cumple con las directrices sobre elastómeros UBA más recientes, cierre en el paso y hacia el exterior a través de una membrana SISTOMaXX con apoyo y confinada, indicador de posición con protección integrada del husillo. Todos los componentes funcionales están fuera del fluido de operación; sin

Aplicaciones

SISTO-16TWA (agua potable hasta 90 °C): agua potable, especialmente en instalaciones de agua potable según DIN 1988, agua clorada, agua de mar etc. SISTO-16HWA (agua caliente hasta 140 °C): agua de servicio de todas las calidades. SISTO-16DLU (aire comprimido hasta 90 °C): aire comprimido lubrificado, aceite y gases técnicos.

https://www.ksb.com/es-es/lc/S43A

≥ -20 - ≤ +160

SISTO-20

m, e, p

PN DN T [°C]

16 Descripción 15 - 300

Válvula de membrana conforme a DIN/EN con bridas, conexión de manguito roscado o conexión de manguito soldado, en paso recto, cierre en el paso y hacia el exterior a través de una membrana con apoyo y confinada, carcasa con recubrimiento o revestimiento, indicador de posición con protección integrada del husillo. Todos los componentes funcionales están fuera del fluido de operación; sin mantenimiento.

Aplicaciones

Edificación, industria y centrales eléctricas para agua potable, agua de servicio, aire, aceite, gases técnicos o fluidos en la industria alimentaria, productos abrasivos y agresivos en ingeniería química y de procesos.

m, e, p https://www.ksb.com/es-es/lc/S44A

SISTO-C

PN DN T [°C]

6 - 200 $\geq -20 \, - \leq +160$

16 Descripción

Válvula de membrana con extremos butt weld o abrazaderas, en paso recto, forma en Y, en T o multipuerto, cierre en el paso y hacia el exterior a través de una membrana sostenida y encapsulada, sin zonas muertas, esterilizable, diseño apto para limpieza CIP/SIP, indicador de posición. Todos los componentes funcionales están fuera del fluido; sin mantenimiento.

Biotecnología, industria farmacéutica, ingeniería de procesos estériles, industria alimentaria y de

https://www.ksb.com/es-es/lc/S46A m, p

Válvulas de diafragma para aplicaciones nucleares

SISTO-20NA

ر ا	PN DN T [°C] ≥ -2	8 - 150	Descripción Válvula de diafragma con extremos butt weld para aplicaciones nucleares, estanqueidad en el paso y hacia el exterior a través de un diafragma de cierre con apoyo y encapsulado. Todos los componentes funcionales están fuera del fluido; sin mantenimiento. Aplicaciones Sistemas de limpieza, sistemas de condensados y de agua de refrigeración; sistemas de aguas residuales, sistemas auxiliares.
m , e, p			https://www.ksb.com/es-es/ld/\$49A

SISTO-DrainNA

	Descripción Válvula de diafragma con extremos butt weld para aplicaciones nucleares, estanqueidad en el paso y hacia el exterior a través de un diafragma de cierre con apoyo y encapsulado. Todos los componentes funcionales están fuera del fluido; sin mantenimiento. Aplicaciones Sistemas de calefacción, sistemas de climatización, sistemas auxiliares.
m	https://www.ksb.com/es-es/lc/S33A

Válvulas de cierre de emergencia y de by-pass

ZJSVM/RJSVM

	PN DN T [°C]	100 - 800	Descripción Válvula de cierre de emergencia y de by-pass conforme a DIN/EN, con extremos butt weld, con tapa sellada a presión (pressure seal), cuerpo forjado monobloc en forma de Z o T, superficies estancas de estelita resistente al desgaste y a la corrosión. Válvula controlada por el fluido del proceso. Aplicaciones Instalaciones industriales, centrales eléctricas, ingeniería de procesos y construcción naval. Para agua y vapor. Otros fluidos no agresivos, por ejemplo, gas o aceite, previa solicitud.
m , e, p			https://www.ksb.com/es-es/lc/Z08A

Juntas de expansión y antivibraciones

ECOLINE GE1/GE2/GE3

	15 - 300 ≤ +105	Descripción Junta de expansión conforme a DIN/EN con bridas o conexión roscada, de elastómero EPDM o NBR, bridas de acero al carbono con revestimiento de níquel. Aplicaciones Regadíos, suministro de aguas domésticas, sistemas de climatización, circuitos de refrigeración, industria alimentaria y de bebidas, tratamiento y abastecimiento de agua.
		https://www.ksb.com/es-es/lc/E55A

ECOLINE GE4

PN DN T [°C]

16 Descripción 20 - 200 Junta antivibraciones conforme a DIN/EN, con cuerpo de EPDM y bridas conforme a normas EN.

20 - 200 Aplicaciones

Regadíos, suministro de aguas domésticas, sistemas de climatización, circuitos de refrigeración, industria alimentaria y de bebidas, tratamiento y abastecimiento de agua.

Palanca manual

CR/CM

		Τ [°C]	≥ -20 - ≤ +80	Descripción Palanca manual en 2 modelos: extremo del eje biplano o cuadrado conforme a ISO 5211, de hierro fundido. Serie CR: bloqueo en 10 posiciones (abierto, cerrado y 8 posiciones intermedias equidistantes). Serie CM: igual que CR pero con un revestimiento especial. Aplicaciones Edificación, ingeniería hidráulica, ingeniería energética e industrial.
--	--	--------	---------------	--

S/SR/SP

Τ [°C]	≥ -20 - ≤ +80	Descripción Palanca manual en 2 modelos: extremo del eje biplano o cuadrado conforme a ISO 5211, en aleación ligera. Serie S: bloqueo en las posiciones finales (abierto y cerrado), serie SR: bloqueo en 9 posiciones (abierto, cerrado y 7 posiciones intermedias equidistantes). Serie SP: bloqueo en todas las posiciones. Aplicaciones Ingeniería hidráulica, ingeniería energética e industrial.

Reductores manuales

MS

Tipo de protección	IP67	Descripción Actuador manual para la maniobra de válvulas 1/4 de vuelta. Engranaje reductor de la serie MS, cinemática por corona y tornillo sin fin irreversible, mando por volante. Aplicaciones Edificación, aplicaciones de la industria general, agua e industria en ambientes no corrosivos ni salinos.
		https://www.ksb.com/es-es/lc/M26A

MC

	Par de salida [Nm] 150-630 Tipo de protección IP66/IF T [°C] ≥ -40 - ≤ +1	
AMTROBOX		https://www.ksb.com/es-es/lc/M26A

Actuadores eléctricos

QuarterTurn AQ, AQL / SQ

Actuador 1/4 de vuelta Tipo de protección Par de salida [Nm] T [°C]

AQ, AQL/SQ Descripción IP68

Actuadores 1/4 de vuelta eléctricos BERNARD CONTROLS o AUMA para el montaje directo sobre válvulas 1/4 de vuelta (brida de acoplamiento conforme a ISO 5211). ≤ 1200 Control de apertura/cierre o regulación. Control local integrado o mando a distancia. ≥ -30 - ≤ +70

Ingeniería hidráulica, ingeniería energética e industria

https://www.ksb.com/es-es/lc/A35A

MultiTurn SA+GS / SAR+GS

Actuador 1/4 de vuelta Actuador de giro Tipo de protección Par de salida [Nm] T [°C]

SA. SAR Descripción

IP68 ≤ 18000

≥ -30 - ≤ +70

100 - 400 Actuadores rotativos eléctricos AUMA con engranaje reductor para el montaje directo sobre válvulas 1/4 de vuelta (brida de acoplamiento conforme a ISO 5211). Control de apertura/cierre o regulación. Control local integrado o mando a distancia.

Ingeniería hidráulica, ingeniería energética e industrial.

https://www.ksb.com/es-es/lc/A35A

SISTO-LAE

Tipo Actuador de giro Tipo de protección Par de salida [Nm]

AUMA Descripción

Actuadores de giro para válvulas con husillo ascendente, fuerza de cierre máxima de 60000 N, configurables en función de la curva característica del fluido y la carrera, indicador de posición de apertura/cierre.

Aplicaciones

Edificación, industria, centrales eléctricas, industria alimentaria y química.

https://www.ksb.com/es-es/lc/S62A

OM

Tipo Accionador rotatorio Tipo de protección Par de salida [Nm]

OM1 - OM13 Descripción:

directo Actuador eléctrico sin embrague para servicios ON/OFF y modulantes, para válvulas de 1/4 de vuelta, directo, marca Sun Yeh, IP67 para el montaje directo a válvula de mariposa y de bola. Brida ≤ 4500 superior según la norma ISO 5211. Fuente de alimentación monofásica y trifásica.

Aplicaciones:

Todo tipo de de aplicación en mercados, de agua, industria, minería

hogar y construcción y energía.

Fabricante:

Sun Yeh Electrical Ind. Co., LTD

Т

Accionador rotatorio Tipo de protección Par de salida [Nm]

directo Descripción:

Actuador eléctrico diseño compacto para montaje en válvulas de un cuarto de vuelta (válvulas de mariposa o válvulas de bola). Brida del actuador según ISO 5211. Suministro de voltaje 24VDC, 110 y 220VAC. Montaje en vástagos de válvulas con el extremo cuadrado o extremo plano. Pares de salida de hasta 15Nm que son ideales para accionar válvulas de cuarto de vuelta de diámetros pequeños. Cubierta de plástico con protección IP 67. Accionamiento manual con palanca.

Aplicaciones:

Todas las aplicaciones en agua, industria en general y construcción.

Fabricante:

Sun Yeh Electrical Ind. Co., LTD

Actuadores hidráulicos

HQ EVO

	Par de salida [Nm] ≤ 55000 Tipo de protección IP68 T [°C] ≥ -45 - ≤ +100	Actuador hidráulico de efecto doble o simple (cartucho de gas o resorte) para el
AMTROBOX		https://www.ksb.com/es-es/lc/H15B

Actuadores neumáticos

ACTAIR EVO

	Par de salida [Nm] ≤ 8000 a 6 bar de presión de mando IP68 Tipo de protección ≥ -50 - ≤ +150 T [°C]	Descripción Actuador neumático de doble efecto para el montaje en válvulas 1/4 de vuelta con extremos del eje conforme a ISO 5211 (válvulas de mariposa o de bola). Brida de acoplamiento conforme a ISO 5211. Presión de mando hasta 8 bar. La cinemática de doble horquilla permite desarrollar pares de salida de hasta 8000 Nm, idóneos para el manejo de válvulas 1/4 de vuelta. Equipado de serie con indicador visual de la posición y topes finales ajustables según el tamaño del actuador, para posición abierta/cerrada o posición cerrada. Con mando manual de emergencia opcional por separado o integrado. Se pueden montar las unidades de control de las series AMTROBOX, AMTRONIC U, SMARTRONIC U o cualquier otra unidad de control con interfaz VDI/ VDE 3845. Aplicaciones Ingeniería hidráulica, ingeniería energética e industrial.
AMTROBOX, AMTRONIC U,	SMARTRONIC U	https://www.ksb.com/es-es/lc/A59C

DYNACTAIR EVO

	Par de salida [Nm] ≤ 4000 a 6 bar de presión de mando IP68 Tipo de protección ≥ -50 - ≤ +150 T [°C]	acamiamiamta conforma a ICO F211 Ducción do mando bacto O bay la cinamética de
AMTROBOX, AMTRONIC U,	SMARTRONIC U	https://www.ksb.com/es-es/lc/D09C

SISTO-LAD

Presión del aire de mando Fuerza de cierre [N]

≤ 6 Descripción

≤ 20000 Actuador de membrana, de diseño compacto, para montaje en válvulas con movimiento lineal del vástago (válvulas de globo, de membrana y de compuerta). Disponible opcionalmente con muelle de cierre, muelle de apertura o con función "aire de control para abrir/cerrar", apto para el montaje de interruptores de fin de carrera o posicionadores en el modelo específico para el cliente.

Aplicaciones

Edificación, industria y centrales eléctricas para productos abrasivos y agresivos como agua de servicio, aguas residuales, ácidos, bases, lodos y productos en suspensión.

SISTO-LAP

Presión del aire de mando [bar] Fuerza de cierre [N]

5.5 - 10 Descripción

Actuador de pistón de diseño muy resistente para uso industrial y montaje en válvulas con movimiento lineal del vástago (válvulas de globo, de membrana y de compuerta). Brida de montaje DIN/ISO 5210, disponible opcionalmente con muelle de cierre, muelle de apertura o con función "aire de control para abrir/cerrar", apta para el montaje de interruptores de fin de carrera o posicionadores en el modelo específico para el cliente.

Aplicaciones

Edificación, industria y centrales eléctricas, así como industria alimentaria e industria química. Los actuadores neumáticos pueden emplearse en atmósferas potencialmente explosivas.

//www.ksb.com/es-es/lc/S63A

SISTO-C LAP

Presión del aire de mando Fuerza de cierre [N]

Descripción < 20000

Actuador de pistón de acero inoxidable de alta calidad para montaje en válvulas de diafragma. Disponible con resorte para cerrar, resorte para abrir o con función "aire para abrir/aire para cerrar"; apto para el montaje de interruptores de fin de carrera o posicionadores en la ejecución específica para el cliente. Montado en fábrica y ajustado con prueba de funcionamiento.

Aplicaciones

Biotecnología, industria farmacéutica, ingeniería de procesos estériles, industria alimentaria y de bebidas.

MIL 37-38

Presión permitida [psi] Carrera [pulg.] NPS

65 Descripción ≤ 4

MIL 37 (posición de seguridad: muelle cerrado) y MIL 38 (posición de seguridad: muelle

abierto) son accionadores de membrana de 1 muelle para válvulas de elevación. 11 - 24

Especialmente ideal para todas las válvulas de control MIL de KSB con una elevación entre 0,125 y 4 pulgadas, cierres y controles de ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

https://www.ksb.com/es-es/lc/M79A

MIL 67-68

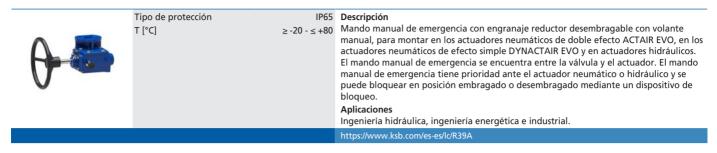
Presión permitida [psi] Carrera [pulg.]

100 Descripción

Accionador de émbolo doble con gran fuerza y rendimiento; presión de suministro

mayor (hasta 100 psi) permitida; los medios de suministro pueden ser aire para las 6 - 24 instalaciones, gas natural u otros medios gaseosos no corrosivos.

Aplicaciones


Especialmente ideal para todas las válvulas de control MIL de KSB que requieren una gran fuerza o elevación. Cierres y controles de ingeniería industrial, de centrales eléctricas y de procesos, tecnología química, petroquímica.

https://www.ksb.com/es-es/lc/M80A

Actuadores

Accesorios de actuadores

EMO

Control

ALS 200

Tipo de protección	IP67	Descripción:
T _{mín.} [°C]		Caja de señalización para actuadores neumáticos, función de
T _{máx.} [°C]	≤ +85	detección de posición, con topes de carrera mecánicos.

Aplicaciones:

Todo tipo de de aplicación en mercados, de agua, industria, minería

hogar y construcción y energía.

Fabricante: Alpha Controls Ltd.

AMTROBOX

posición todo o nada median	
-----------------------------	--

AMTROBOX Ex ia

Tipo de protección T [°C]	IP67 ≥ -10 - ≤ +50	Descripción Caja de interruptores de fin de carrera multifuncional AMTROBOX. Para la detección de posición todo o nada mediante interruptores de fin de carrera mecánicos o sensores de proximidad. AMTROBOX Ex ia: ejecución de seguridad intrínseca para atmósferas potencialmente explosivas. Aplicaciones Ingeniería hidráulica, edificación e ingeniería energética.
------------------------------	-----------------------	---

AMTROBOX ATEX Zone 22

Tipo de protección	IP67	Descripción
Τ [°C]	≥-10-≤+60	Caja de interruptores de fin de carrera multifuncional AMTROBOX. Para la detección de posición todo o nada mediante interruptores de fin de carrera mecánicos o sensores de proximidad. AMTROBOX ATEX Zona 22: ejecución ATEX (polvos, zona 22) para atmósferas potencialmente explosivas. Aplicaciones Ingeniería hidráulica, edificación e ingeniería energética.
		https://www.ksb.com/es-es/lc/A34A

AMTROBOX M

Tipo de protección T [°C]	Descripción Caja de interruptores de fin de carrera idónea para el accionamiento manual. Para la detección de posición todo o nada mediante interruptores de fin de carrera mecánicos o sensores de proximidad. Montaje de AMTROBOX M sobre las palancas manuales 1/4 de vuelta de la serie S (R1020) y sobre los engranajes reductores MA 12 y MA 25 (R1021). Aplicaciones Ingeniería hidráulica, edificación e ingeniería energética.

Automatización

AMTROBOX R

Tipo de protección	
T [°C]	

IP68 Descripción

≥ -45 - ≤ +80

Robusta y multifuncional. Para la detección de posición todo o nada mediante interruptores de fin de carrera mecánicos o sensores de proximidad. AMTROBOX R puede montarse sobre engranajes reductores de KSB, actuadores neumáticos, actuadores hidráulicos y cualquier actuador con interfaz VDI/VDE.

Aplicaciones

Ingeniería hidráulica, ingeniería energética, instalaciones offshore e industria pesada.

https://www.ksb.com/es-es/lc/A47A

AMTROBOX R Ex ia

Tipo de protección T [°C] IP68 Descript $\geq -25 - \leq +80$ Robust

Robusta y multifuncional. Para la detección de posición todo o nada mediante interruptores de fin de carrera mecánicos o sensores de proximidad. AMTROBOX R Ex ia: ejecución de seguridad intrínseca para atmósferas potencialmente explosivas, zonas 0 + 21.

Aplicaciones

Ingeniería hidráulica, ingeniería energética, instalaciones offshore e industria pesada.

nttps://www.ksb.com/es-es/lc/A47/

Control de apertura/cierre

ALP 1000

Tipo de protecci	ón
T _{min.} [°C]	
T _{máx.} [°C]	

IP66 Descripción:

≥ -20 Posicionador para actuadores neumáticos, función de detección de ≤ +70 posición y regulación, con Posicionador mecánico y versión con transmisión de la posición.

Aplicaciones:

Todo tipo de de aplicación en mercados, de agua, industria, minería hogar y construcción y energía.

Fabricante:

Alpha Controls Ltd.

AMTRONIC U

Tipo de protección
Presión del aire de mando [bar]
T [°C]

IP67 Descripción

3 - 8
≥ -20 - ≤ +80
Since the control de apertura/cierre para actuadores neumáticos 1/4 de vuelta y señalización de fin de carrera. Ofrece una solución integral compacta y robusta gracias al montaje directo con placa base universal sobre los actuadores ACTAIR EVO / DYNACTAIR EVO. Gracias a la válvula distribuidora integrada, no se requiere ninguna tubería neumática entre AMTRONIC U y el actuador. El tiempo de maniobra del actuador puede ajustarse mediante AMTRONIC U regulando el caudal de salida de aire. AMTRONIC U puede conectarse a buses de campo Profibus DP y AS-i. AMTRONIC U fue especialmente desarrollado para reducir el cableado de las unidades de control. La conexión a un bus de campo asegura la alimentación eléctrica y el intercambio de información de control con el sistema de control de proceso.

Aplicaciones

Ingeniería hidráulica, ingeniería energética e industrial.

https://www.ksb.com/es-es/lc/A63B

AMTRONIC U Ex ia

Tipo de protección Presión del aire de mando [bar] T [°C]

IP67 Descripción

3 - 8 Control de apertura/cierre para actuadores neumáticos 1/4 de vuelta y señalización de ≥ -20 - ≤ +80 fin de carrera. Ofrece una solución integral compacta y robusta gracias al montaje directo con placa base universal sobre los actuadores ACTAIR EVO / DYNACTAIR EVO. Gracias a la válvula distribuidora integrada, no se requiere ninguna tubería neumática entre AMTRONIC U y el actuador. El tiempo de maniobra del actuador puede ajustarse mediante AMTRONIC U regulando el caudal de salida de aire. En su ejecución de seguridad intrínseca Ex ia, AMTRONIC U puede utilizarse en atmósferas potencialmente explosivas. Cumple los requisitos de la Directiva 2014/34/UE y dispone de marcado CE 0081 Ex II 1 G. Su tipo de protección es Ex ia IIC T6 conforme a EN 60079-0 y FN 60079-11.

Aplicaciones

Ingeniería hidráulica, ingeniería energética e industrial.

https://www.ksb.com/es-es/lc/A63B

Posicionadores

ALP 2000

Tipo de protección $T_{min.}$ [°C] $T_{m\acute{a}x.}$ [°C]

IP65 Descripción:

Posicionador inteligente para actuadores neumáticos, auto ≥ -20 calibrado, función de detección de posición y regulación, con Posicionador mecánico. Para funcionamiento on-off y regulación, con indicador de posición mecánico.

Aplicaciones:

Todo tipo de de aplicación en mercados, de agua, industria, minería hogar y construcción y energía.

Fabricante:

Alpha Controls Ltd.

SMARTRONIC U MA

Tipo de protección Presión del aire de mando [bar] T [°C]

2 - 7

 \geq -20 - \leq +80

IP67 Descripción

Posicionador digital electroneumático con alimentación eléctrica mediante la señal de 4-20 mA. Es apto para el montaje en las series ACTAIR EVO / DYNACTAIR EVO con suministro directo de aire de control, en cualquier tipo de actuador 1/4 de vuelta con interfaz VDI/VDE 3845 o en actuadores de movimiento lineal según NAMUR. SMARTRONIC U MA reduce los costes de inversión, puesta en marcha y explotación, pues no consume aire de control en reposo.

Aplicaciones

ingeniería hidráulica, ingeniería energética e industrial.

SMARTRONIC U AS-i

Tipo de protección Presión del aire de mando [bar] T [°C]

≥ -20 - ≤ +80

IP67 Descripción

3 - 8 Posicionador digital electroneumático para conexión a un bus de campo AS-i. Está certificado por AS International. Es apto para el montaje en las series ACTAIR EVO / DYNACTAIR EVO con suministro directo de aire de control, en cualquier tipo de actuador 1/4 de vuelta con interfaz VDI/VDE 3845 o en actuadores de movimiento lineal según NAMUR

Aplicaciones

Ingeniería hidráulica, ingeniería energética e industrial.

Automatización 79

Posicionador inteligente

SMARTRONIC U PC

Tipo de protección Presión del aire de mando [bar] T [°C] IP67 Descripció

3 - 8
≥ -20 - ≤ +80
Posicionador inteligente, compacto e innovador. Es una unidad multifuncional con funciones de regulación integradas que permite utilizar la tecnología de control y regulación para válvulas más avanzada. Ofrece una solución integral compacta y robusta gracias al montaje directo sin arcada ni tubería externa sobre los actuadores de las series ACTAIR EVO y DYNACTAIR EVO. SMARTRONIC U PC ofrece cuatro funciones: curvas características programables para apertura y cierre, regulación inteligente de la posición, monitorización del proceso y regulación. SMARTRONIC U PC se programa desde un PC. Es compatible con bus de campo Profibus DP.

Aplicaciones

Ingeniería hidráulica, ingeniería energética e industrial.

nttps://www.ksb.com/es-es/lc/S06B

Aviso legal Programa de productos Válvulas I Accionadores I Automatización Reservados todos los derechos. El contenido no se puede difundir, reproducir, modificar ni entregar a terceros sin autorización escrita del fabricante. Norma general: nos reservamos el derecho a realizar modificaciones técnicas. © KSB SE & Co. KGaA, Frankenthal 2023-02-16

Casa Matriz

Av. Las Esteras Sur N° 2851, Quilicura, Santiago

Tel. +56 2 2677 83 00 E-mail: cl.ksb@ksb.com

Sucursal Antofagasta

Camino La Minería Nº 265, La Negra, Antofagasta

Tel. +56 55 263 8900 E-mail: cl.antofagasta@ksb.com

Sucursal Copiapó

Ruta 5 Norte N° 3604 – KM 813, Módulo 4, Oficina 7 – Megacentro, Copiapó

Tel. + 56 52 2243 725 E-mail: cl.copiapo@ksb.com

Sucursal Coquimbo

Puerto Seco 271, Galpón 22, Ruta D-43 Coquimbo

Tel. + 56 51 2239714 E-mail: cl.coquimbo@ksb.com

Sucursal Concepción

Vasco Núñez de Balboa Nº 9060 Parque Industrial San Andrés, Hualpén Concepción.

Tel. + 56 41 240 80 00 E-mail: cl.concepcion@ksb.com

Sucursal Temuco

Work Center Maquehue, Ruta 194, N° 3081 Módulo 4, Padre Las Casas, Temuco

Tel. +56 45 2254545 E-mail: cl.temuco@ksb.com

Sucursal Puerto Montt

Ruta 5 Sur, Kilometro 1025, Modulo 12, Megacentro II, Sector Alto Bonito, Puerto Montt

Tel. +56 65 231 3000 E-mail: cl.puertomontt@ksb.com

