Drive for decentralised control systems

FlexiMova ${ }^{\circledR}$ mm

Programming Manual

Proprietary notice

Programming manual FlexiMova ${ }^{\circledR}$ mm - Rev. 05

Original operating instructions.
All rights reserved. It is strictly prohibited to reproduce, edit and/or disclose the contents of this document to third parties without the written approval of the Manufacturer.

Technical specifications are subject to change without notice.
© REEL S.r.l. a Socio Unico (A KSB Company), Ponte di Nanto, 16.09.2019
1 INTRODUCTION 3
1.1 Purpose of the Manual 3
1.2 Software version 3
1.3 Additional documents 3
2 OPERATING MODES 4
2.1 Manual. 4
2.2 Automatic 4
2.2.1 Speed/torque control 4
2.2.2 Position control6
3 DESCRIPTION OF THE PARAMETERS 8
Section 1: Operating data 8
Section 1-1: Login 8
Section 1-2: Supervision 8
Section 1-3: Commands 19
Section 1-4: Date and time 19
Section 2: Alarm log. 20
Section 3: Main menu 21
Section 3-1: General settings 21
Section 3-3: Inverter 29
Section 3-4: Inputs and outputs 42
Section 3-5: References 57
Section 3-6: Process PID 67
Section 3-7: Positioning controller. 81
Section 3-8: Fieldbus 95
Section 3-9: Safety functions 95
Section 3-10: Electric gearbox 96
Section 4: Information 99
Section 4-1: Inverter 99
Section 4-2: LCP 100
Section 4.3: Fieldbus 100
4 LCP INTERFACE. 103
4.1 Graphic display. 104
4.2 Manual operation via LCP 106
4.3 Menu buttons 107
4.3.1 Menu: Operating data 107
4.3.2 Menu: Alarm log 107
4.3.3 Main menu 109
4.3.4 Information menu 110
4.4 Service Interface and LED Coding 110
5 TROUBLESHOOTING 111
5.1 Alarms 111
5.2 Warning 113

1 Introduction

1.1 Purpose of the Manual

This manual contains: information required for the configuration and programming of the FlexiMova ${ }^{\circledR}$ mm, examples of how it functions and troubleshooting information.
The target audience of this manual is qualified people who are familiar with the operation of a frequency converter and the typical automation that it enables.

1.2 Software version

The parameters and functions described in this manual refer to the FlexiMova ${ }^{\circledR} \mathrm{mm}$ updated to the version:

V 1.3.6

The firmware version is stated in parameter 4-1-2.

1.3 Additional documents

In this manual you will find references made to the following additional documents. They include:

- \quad FlexiMova ${ }^{\circledR}$ mm - Design and Installation Manual This manual contains all the information you need to install the product and for the correct sizing of the components.
- FlexiMova ${ }^{\circledR}$ mm - Modbus Fieldbus Manual This manual contains all the information you need to install, program and use the optional Modbus RTU RS485 communication protocol.
- FlexiMova ${ }^{\circledR}$ mm - Profibus Fieldbus Manual

This manual contains all the information you need to install, program and use the optional Profibus DP communication protocol.

- FlexiMova ${ }^{\circledR}$ mm - Profinet Fieldbus Manual

This manual contains all the information you need to install, program and use the optional ProfiNet communication protocol.

INFORMATION

Updated documents are available in the download section of the Manufacturer's website https://www.reel.it

2 Operating modes

2.1 Manual

In the manual operating mode the product is speed/torque controlled at the setpoint in parameter 1-3-2/1-3-3.
Switching from "Manual" to "Off" stops the motor as defined in parameter 3-1-3. In this mode the IO functions, the reference management and the process PID controller are ignored.

2.2 Automatic

2.2.1 Speed/torque control

In the automatic operating mode the motor speed/torque control is managed through the IO interface, the fieldbus or the process PID controller.

Figure 1: Speed/torque control

Various methods are provided for enabling motor rotation:

- "Start system": enabling of the PWM modulation and the speed reference are automatic.
With start system active the PWM and the reference are enabled, when it is disabled the reference is zeroed and when the ramp output speed is zero, the PWM is also disabled.
The speed reference is given by the priorities set in menus 3-5 "JOG":
- "JOG": it functions like "Start system" but the speed reference is the one set in menus 3-5-10.
- "Enable PWM" - "Enable speed ref.": enabling of the PWM modulation and the speed reference is managed independently through the dedicated controls.
The two enabling methods are exclusive. The enabling method is decided by selecting the desired digital functions in menus 3-4-2-1 "Digital input Functions".

INFORMATION

If digital input functions that are compatible with both modes are selected then the "System start" function becomes irrelevant.

Enable PWM: enables (True) or disables (False) the modulation on the motor. In this enable method with only this input active the motor remains stopped in torque mode. If this input is disabled while the motor is rotating the motor will be disabled and will coast to a stop.
It will not be possible to re-enable the modulation for the period of time specified in Par. 3-3-11-5 "Lock time".
Enable speed reference: enables (True) or disables (False) the speed reference. If this input is disabled while the motor is rotating the motor stops with the deceleration ramp set in menu 3-3-2.

The torque control can be enabled through par. 3-3-8-1.
Two operating modes are implemented: "feed forward" and "est. torque" that executes a feedback action with the PI controller (constants settable in section 3-$3-8-5)$. The torque control can be enabled/disabled through the digital input with the "Speed/torque" function that can be set in the parameters in section 3-4-2-1. In the torque control the secondary reference (par. 3-5-5) is used as the actual motor speed limit.
The figure below shows the enabling and operating diagram of the torque control.

Figure 2: Enabling and operating diagram of the torque control

2.2.2 Position control

2.2.2.1 Positioning control

The positioning mode can be enabled in parameter 3-7-1 "Positioning mode" with a setting other than "Off". In the automatic operating mode the motor position control is managed through the IO or Fieldbus interface.

Figure 3: Positioning control

Various methods are provided for enabling motor rotation:

- Start system: In position control mode the "Start system" command includes the PWM enable command and the "Start", "Step" or "Halt" command depending on the status of the positioner.
- Positive front:
- Enable PWM + Start if the positioner is not performing any positioning sequence.
- Enable PWM + Step if the positioner is performing a sequence and is stopped with a halt command.
- Negative front:
- Disable PWM + Halt. The drive deactivates the modulation once the ramp to stop is completed.
- Enable PWM: enables (True) or disables (False) the modulation on the motor. In this enable method with only this input active the motor remains stopped in torque mode. If this input is disabled while the motor is rotating the motor will be disabled and will coast to a stop.
It will not be possible to re-enable the modulation for the period of time specified in Par. 3-3-11-5 "Lock time".

2.2.2.2 Electric gearbox

The electric shaft mode can be enabled in parameter 3-10-1 "Electric gearbox" with a setting other than "Off".
In the automatic operating mode the motor position control is managed through the IO or Fieldbus interface.

Figure 4: Position control (electric gearbox)

Various methods are provided for enabling motor rotation:

- "Start system": enabling of the PWM modulation and the speed reference are automatic.
With start system active the PWM and the reference are enabled, when it is disabled the reference is zeroed and when the ramp output speed is zero, the PWM is also disabled.
- The speed reference is given by the priorities set in menus 3-5 "JOG": it functions like "Start system" but the speed reference is the one set in menus 3-5-10.
- "Enable PWM" - "Enable speed reference": enabling of the PWM modulation and the speed reference is managed independently through the dedicated controls.

The two enabling methods are exclusive. The enabling method is decided by selecting the desired digital functions in menus 3-4-2-1 "Digital input functions".

INFORMATION

If digital input functions that are compatible with both modes are selected then the "Start system" function becomes irrelevant.

Enable PWM: enables (True) or disables (False) the modulation on the motor. In this enable method with only this input active the motor remains stopped in torque mode. If this input is disabled while the motor is rotating the motor will be disabled and will coast to a stop.
It will not be possible to re-enable the modulation for the period of time specified in Par. 3-3-11-5 "Lock time".
Enable speed reference: enables (True) or disables (False) the speed reference. If this input is disabled while the motor is rotating the motor stops with the deceleration ramp set in menu 3-3-2.

3 Description of the parameters

Section 1: Operating data

Section 1-1: Login

| Parameter | | |
| :--- | :--- | :--- | :--- |
| 1-1-1
 User login | Login function with password input. | Setting |
| | | Default: |

Section 1-2: Supervision

The parameters contained in this section are read-only.
Section 1-2-1: Motor and frequency converter

Parameter	Description	Setting
$1-2-1-1$ Motor frequency	Motor rotation frequency. If the motor rotates counterclockwise (CCW) the frequency will be displayed with a negative sign.	Default: $0.00[\mathrm{~Hz}]$
		Min.: $-500.00[\mathrm{~Hz}]$
		Max.: $500.00[\mathrm{~Hz}]$
1-2-1-2 Motor speed	Motor rotation speed. If the motor rotates counterclockwise (CCW) the speed will be displayed with a negative sign.	Default: 0 [rpm]
		Min.: -30000 [rpm]
		Max.: $30000 \text { [rpm] }$
1-2-1-3 Motor current	Pass-through current on the motor.	Default: 0.00 [A]
		Min.: $0.00[\mathrm{~A}]$
		Max.: $250.00[\mathrm{~A}]$
1-2-1-4 Motor voltage	Voltage (V) applied to the motor. Read-only parameter.	Default: 0.00 [V]
		Min.: 0.00 [V]
		Max.: $999.00 \text { [V] }$

Parameter		
1-2-1-5 Motor input power	Electrical power input to the motor. Read-only parameter.	Setting

Section 1-2-2: Positioning controller

Menu visible with "positioning controller" macro enabled. See section 3-7.

Parameter	Description	Setting
$1-2-2-1$ Actual pos. setpoint	Profile position setpoint in progress. The value is expressed in the digital units (${ }^{*}$) configured by the user in par. 3-7-2-3.	Default: $0 \text { [*] }$
		$\begin{aligned} & \text { Min.: } \\ & -65000000 \text { [*] } \end{aligned}$
		Max.: $65000000 \text { [*] }$
1-2-2-2 Actual position	Actual position. The value is expressed in the digital units ([*]) configured by the user in par. 3-7-2-3.	Default: 0 [*]
		$\begin{aligned} & \hline \text { Min.: } \\ & -65000000 \text { [*] } \\ & \hline \end{aligned}$
		Max.: $65000000 \text { [*] }$
$1-2-2-3$ Positioning status	Operating status of the positioning controller: Bit0: Line present Bit1: PWM active Bit2: Profile in progress Bit3: Profile halted Bit4: Direction ($0=$ CW, $1=$ CCW) Bit5: Motor rotating Bit6: Setpoint reached Bit7: Alarm status Bit8: Warning status Bit9: AMA procedure in progress Bit10: Locked Bit11: Homing procedure active Bit12: Homing procedure completed Bit13: Fixed speed mode active Bit14: Not used. Bit15: Fieldbus control active	Default: 0×0
		$\begin{aligned} & \text { Min.: } \\ & 0 \times 0 \end{aligned}$
		Max.: 0xFFFF
1-2-2-4 Current profile	Indicates the profile in progress. 0 indicates no profile in progress.	Default: 0
		$\begin{aligned} & \hline \text { Min.: } \\ & 0 \\ & \hline \end{aligned}$
		Max.: 8
$1-2-2-5$ Selected profile	Indicates the profile selected via the digital inputs or via parameter $3-7-2-12$. The profile indicated here will be loaded into "Current profile " following a "Start" command. 0 indicates no profile in progress.	Default: 0
		$\begin{aligned} & \text { Min.: } \\ & 0 \end{aligned}$
		Max.: 8

Section 1-2-3: Inputs/Outputs

Parameter	Description	Setting
$1-2-3-1$ Digital inputs	Status of the digital inputs (DIN) ($0=$ Inactive, $1=$ Active). Bit0: Digital input 1 (terminal C2 on the control board). Bit1: Digital input 2 (terminal C3 on the control board). Bit2: Digital input 3 (terminal C4 on the control board). Bit3: Digital input 4 (terminal C5 on the control board). Bit4: diagnostic channel STO digital input (terminal C6 on the control board). Bit5: Safety Hardware Channel STO digital input (terminal C10 on the control board). Bit6: input DIN6 (terminal F4 on RX-I/O-A board and terminal F1 on FX-I/O-B and FX-I/O-C boards). Bit7: input DIN7 (terminal F5 on FX-I/O-A board and terminal F2 on FX-I/O-B and FX-I/O-C boards). Bit8: input DIN8 (terminal F6 on FX-I/O-A board and terminal F3 on FX-I/O-B and FX-I/O-C boards).	Default: 0b Min.: 0b Max.: 111111111b
1-2-3-2 Digital outputs	Status of the digital outputs (Relay) ($0=$ Inactive, $1=$ Active). Bit0: relay output 1 (terminals $\mathrm{A} 3(\mathrm{NO})$ and $\mathrm{A} 4(\mathrm{NC})$ on the control board). Bit1: relay output 2 (terminals $\mathrm{A} 8(\mathrm{NO})$ and $\mathrm{A} 9(\mathrm{NC})$ on the control board). Bit2: relay output 3 (terminals E1 (NO) and E2 (NC) on FX-I/O-A board and terminals D8 (NO) and D9 (NC) on FX-I/O-C boards). Bit3: relay output 4 (terminal D2 (NO) on FX-I/O-A board and terminal D6 (NO) on FX-I/O-C board). Bit4: relay output 5 (terminal D3 (NO) on FX-I/O-A board and terminal D5 (NO) on FX-I/O-C board). Bit5: relay output 6 (terminal D4 (NO) on FX-I/O-A board and terminal D4 (NO) on FX-I/O-C board). Bit6: relay output 7 (terminal D5 (NO) on FX-I/O-A board and terminal D3 (NO) on FX-I/O-C board). Bit7: relay output 8 (terminal D6 (NO) on FX-I/O-A board and terminal D2 (NO) on FX-I/O-C board). Bit8: digital output 1 (terminal E4 on RX-I/O-A board). Bit9: digital output 2 (terminal E5 on FX-I/O-A board).	Default: 0b Min.: 0b Max.: 1111111111b
1-2-3-3 Analog input 1	Value of analog input 1. Unit of measurement and range depend on par. 3-4-1-1.	Default: 0.0 [V] Min.: -10.0 [V] -20.0 [mA] Max.: 10.0 [V] 20.0 [mA]
1-2-3-4 Analog input 2	Value of analog input 2. Unit of measurement and range depend on par. 3-4-1-4.	Default: $0.0 \text { [V] }$ Min.: -10.0 [V] $-20.0[\mathrm{~mA}]$ Max.: $10.0[\mathrm{~V}]$ 20.0 [mA]

Parameter	Description	Setting
1-2-3-5 Analog input 3	Value of analog input 3. Unit of measurement and range depend on par. 3-4-1-7. Parameter visible with " $\mathrm{FX}-1 / \mathrm{O}-\mathrm{A}$ " expander board connected.	Default: 0.0 [V]
		$\begin{aligned} & \text { Min.: } \\ & -10.0[\mathrm{~V}] \\ & -20.0[\mathrm{~mA}] \\ & \hline \end{aligned}$
		Max.: 10.0 [V] 20.0 [mA]
1-2-3-6 Analog output 1	Value of analog output 1. Unit of measurement and range depend on par. 3-4-4-5.	Default: 0.0 [V]
		Min.: 0.0 [V] $0.0[\mathrm{~mA}]$ 0.0 [kHz]
		Max.: 10.0 [V] 20.0 [mA] 100.0 [kHz]
$\begin{aligned} & \text { 1-2-3-7 } \\ & \text { Analog output } 2 \end{aligned}$	Value of analog output 1. Unit of measurement and range depend on par. 3-4-4-12. Parameter visible with "FX-I/O-A" expander board connected.	Default: 0.0 [V]
		Min.: 0.0 [V] 0.0 [mA] 0.0 [kHz]
		Max.: 10.0 [V] 20.0 [mA] 100.0 [kHz]
1-2-3-8 Frequency Input	Value of Frequency Input This parameter is visibile when digital input "DIN1 Function" is set as "Frequency Input".	Default: 0.0 [kHz]
		Min.: 0.0 [kHz]
		Max.: 100.0 [kHz]

Section 1-2-4: Process PID

Menu visible with process PID active. See section 3-6.

Parameter
Description
Setting

$\begin{aligned} & \text { 1-2-4-1 } \\ & \text { Process PID } \\ & \text { Setpoint } \end{aligned}$	Setpoint of the process PID. Unit of measurement and range depend on par. 3-6-2, 3-6-8 and 3-6-9.	Default: $0.0 \text { [\%] }$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200.0\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: 100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ 350.0 [${ }^{\circ} \mathrm{C}$]
$1-2-4-2$ Process PID Feedback	Process PID feedback, with scaling according to par. 3-6-13. Unit of measurement and range depend on par. 3-6-2, 3-6-11 and 3-6-12.	Default: $0.0 \text { [\%] }$
		$\begin{aligned} & \hline \text { Min.: } \\ & 0.0[\%] \\ & -1.0[\mathrm{bar}] \\ & 0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right] \\ & -200.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 100.0[\%] \\ & 999.9[\mathrm{bar}] \\ & 9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right] \\ & 350.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$

Section 1-2-4-3: Multi Drive

Menu visible with Multi-Drive function active and on drives with "Master" and
"Slave1" addresses. See section 3-6-21.

| Parameter | | |
| :--- | :--- | :--- | :--- | :--- |
| 1-2-4-3-1
 Number of
 connected slaves | Number of "Slave" drives that the "Master" has found on scanning
 the Multi-Drive communication. | Default:
 0 |
| 1-2-4-3-2
 Number of
 running drives | Number of drives with running motor. | Min.:
 0 |

Section 1-2-5: Fieldbus

Menu visible with fieldbus module connected.

Section 1-2-5-1: Profibus module

Menu visible with Profibus module connected.

| Parameter | Description | Setting |
| :--- | :--- | :--- | :--- |
| 1-2-5-1-1
 Transmission speed | Transmission speed of the Profibus module. | Default: |

Section 1-2-5-2: Profinet module

Menu visible with Profinet module connected.

Parameter	Description	Setting
1-2-5-2-1 IP address	Module's Ethernet network IP address.	Min.: l
		Max.: 1
1-2-5-2-2 Subnet mask	Module's subnet mask in the Ethernet network.	Default:

Parameter
Description
Setting

$1-2-5-2-8$ Module type	Type of module set by the master.		Default: Not configured
	Function	Description	
	Not assigned	No modules configured.	
	PROFIdrive standard telegram 1,7 and 9	Telegram according to PROFIdrive standard. For further information consult the specific manual for the module.	Min.:
	Free telegram 1-5	Free telegram configurable by the user. For further information consult the specific manual for the module.	Max.: $\mid /$

Section 1-2-6: Safety function

Menu visible with safety function enabled. See section 3-9.

Parameter	Description	Setting
1-2-6 Timeout STO check	Indicates the hours remaining until the drive stops to request a control of the STO chain integrated in the converter. This value only appears if the periodic control of the STO inputs is enabled. The counter is reset at each STO request.	Default: $8760[\mathrm{~h}]$
Min.:		
$0[\mathrm{~h}]$		

Section 1-2-7: Electric gearbox

Menu visible with electric gearbox function enabled. See section 3-10.

Parameter Description		Setting
1-2-7-1 Gearbox position setpoint	Position setpoint.	Default: 0 [deg]
		Min.: 0 [deg]
		Max.: 360 [deg]
$1-2-7-2$ Gearbox actual position	Current position.	Default: 0 [deg]
		Min.: 0 [deg]
		Max.: 360 [deg]

Section 1-3: Commands

Parameter		Description	Setting
1-3-1 Drive mode	Selection of the operating modes for the converter.		Default: Off
	Function	Description	
	Off	The converter does not command any speed/torque reference to the motor.	
	Man	The converter commands the speed/torque set in parameters 1-3-2 and 1-3-3 to the motor. In this mode the motor starts as soon as any speed reference other than zero is set.	$\begin{aligned} & \text { Min.: } \\ & / \end{aligned}$
	Auto	The converter can operate in a closed loop (process PID) or in an open loop depending on the parameters set in section 3 -Settings. In this mode the motor does not start if rotation is not enabled through the appropriately set digital inputs.	
	You can change the mode from the LCP module with the "Off", "Man" or "Auto" buttons. In case the parameter $3-1-11$ is on, the drive mode is visible only after the login.		Max.: /
1-3-2 Manual speed reference	Setting of the speed reference. Unit of measurement depends on par. 3-1-1.		Default: $0 \text { [Hz] }$
			Min.: Par. 3-2-3-3
			Max.: Par. 3-2-3-4
1-3-3 Manual torque reference	Setting of the torque reference [Nm]. Parameter visible in the "Vector" or "SRM" control, with torque control enabled.		$\begin{aligned} & \text { Default: } \\ & 0.00[\mathrm{Nm}] \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { Min.: } \\ & 0.00[\mathrm{Nm}] \end{aligned}$
			Max.: Par. 3-2-3-5

Section 1-4: Date and time

Parameter	System time display.	Sescription	Default:
1-4-1 System time		 	

Section 2: Alarm log

Parameter		Description	Setting
$2-1$ Active alerts	Function for displaying the active alarms on the converter. Parameter only visible on the LPC module. To display the active alarms on SW PC use the "Active alerts" page.		Default: /
			Min.: /
			Max.: /
2-2 Alerts history	Function for displaying the alarm history. Parameter only visible on the LPC module. To display the active alarms on SW PC use the "Alerts history" page.		Default: /
			Min.: /
			Max.: /
2-4 Reset alert type [c]	Setting of the alerts reset mode:		Default: Manual
	Function	Description	
	Manual	The alarms must be reset manually by pressing the "OK" button on the LCP or through the relevant procedure using the SW PC.	
	Inf. reset @ 5 min	The converter automatically resets the alarm an infinite number of times after a period of 5 min .	
	Inf. reset @ 15 min	The converter automatically resets the alarm an infinite number of times after a period of 15 min .	
	1 s 10 s 30 s	The converter makes 3 attempts to reset with increasing times ($1=1 \mathrm{~s} ; 2=10 \mathrm{~s} ; 3=30 \mathrm{~s}$). Once the available number of attempts have been used up the alarm will have to be set manually. The attempts decrease after 30 s of operation without alarms.	Min.: /
	10 s 60 s 5 min	The converter makes 3 attempts to reset with increasing times ($1=10 \mathrm{~s} ; 2=60 \mathrm{~s} ; 3=5 \mathrm{~min}$). Once the available number of attempts have been used up the alarm will have to be set manually. The attempts decrease after 30 s of operation without alarms.	
	10 s 60 s Inf. reset @ 5 min	The converter makes 3 attempts to reset with increasing times ($1=10 \mathrm{~s} ; 2=60 \mathrm{~s}$; inf= 5 min). Once the available number of attempts have been used up the Drive automatically resets the alarm an infinite number of times after a period of 15 min .	
			Max.: /
	$\begin{aligned} & 10 \mathrm{~s} 60 \mathrm{~s} \\ & 5 \mathrm{~min} 1 \mathrm{~h} \end{aligned}$	The converter makes 4 attempts to reset with increasing times ($1=10 \mathrm{~s} ; 2=60 \mathrm{~s} ; 3=5 \mathrm{~min} ; 4=$ 1 h). Once the available number of attempts have been used up the alarm will have to be set manually. The attempts decrease after 30 s of operation without alarms.	
	The timer for the alarm reset starts once the cause for the alarm has been eliminated, to prevent the converter from re-enabling due to the cause that is still pending.		

Section 3: Main menu

Section 3-1: General settings

Parameter	Description		Setting
$3-1-1$ Unit of measurement selection	Selection of the unit of measurement with which the rotation speed of the motor shaft will be expressed.		Default: [Hz]
			Min.: /
			Max.: /
3-1-2 LCP module language	Selection of the language for the LCP module (Italian, English).		Default: Italiano
			Min.: /
			Max.:
3-1-3 LCP "Off" button function	Selection of the "OFF" button function of the LCP module:		Default:
	Function	Description	
	Ramp to stop	When the "Off" button is depressed the drive will stop the motor with a deceleration ramp set in menu 3-2-2.	Min.: /
	Coast to stop	When the "Off" button is depressed the drive will stop the modulation, allowing the motor to coast to a stop.	Max.: /
3-1-4 LCP backlight mode	Selection of the backlight mode for the LCP:		Default:
	Function	Description	
	Always on	The backlight is always on.	Min.:
	Always off	The backlight is always off.	
	Timeout	The backlight goes out after a period of inactivity set in par. 3.1.5.	Max.:
3-1-5 Backlight timeout	The amount of time the LCP module backlight stays on. Parameter visible with par. 3-1-4 set on "Timeout".		$\begin{aligned} & \text { Default: } \\ & 15.0 \text { [sec] } \end{aligned}$
			Min.: 0.0 [sec]
			Max.: 300.0 [sec]
3-1-6 LCP contrast setting	Contrast setting of the LCP module.		$\begin{aligned} & \text { Default: } \\ & 45.0 \text { [\%] } \end{aligned}$
			Min.: 25.0 [\%]
			Max.: 65.0 [\%]

Parameter		Description	Setting
3-1-7 Stop mode "System start"	Stop mode selection due to command "Stop mode" disabling from digital input.		Default: /
	Function	Description	
	Ramp stop	Once the "System start" input is disabled, the drive will stop the motor with a deceleration ramp set in menù 3-2-2.	Min.: /
	Coast stop	Once the "System start" input is disabled, the drive will stop the modulation, leaving the motor free.	Max.: /

Section 3-1-8: Parameter sets

Parameter	Description	Setting
3-1-8-1 Load settings 1 [c]	Function for load settings 1.	Min.:
3-1-8-2 Load settings 2 [c]		Max.:

Section 3-1-9: Date and time

Section 3-2.: Motor

Section 3-2-1: Motor data

Parameter	Selection of the motor type: Asynchronous [V/F] Asynchronous [Vector] Synchronous reluctance[SRM] 3-2-1-1 Motor type [c]	
3-2-1-2 Synchronous Reluctance selected motor [c]	Function for displaying the selected REEL SuPremE® Read-only parameter and only visible in the controller.	Defape. [V/F]
Min.:		

Parameter	Description	Setting
3-2-1-9 Start AMA [c]	Function for automatic calibration of the motor's advanced parameters. The function can be activated with "Vector" or "SRM" control, with the motor at a standstill and with "Auto On" selected. Three different modes are implemented:	Default: /
	Function Description	
	AMA advanced - rotating The advanced motor data are calculated through measurement during which the motor rotates at approx. 10 \% of the rated speed. A	
	AMA standard - not rotating\quadThe advanced motor data are calculated through measurement during which the motor is at a standstill.	
	AMA offline The advanced motor data required for the setting of the vector are calculated based on the rated motor	Min.:
	Before starting the automatic motor adaptation procedure make sure that the data on the motor nameplate have been programmed correctly. If performing the standard automatic motor adaptation procedure as with the advanced one using long connecting cables measurement errors may occur in identifying the advanced motor data. This could cause nonoptimal operation of the motor or even failure to operate. In these cases it is always advisable to use the offline automatic motor adaptation. It can take several minutes to perform the standard AMA and particularly the advanced AMA depending on the construction size of the motor. If it is not possible to calculate the advanced motor data with AMA or if any other alarm trips during the procedure, an A10 "AMA Error" alarm is generated. In this case the advanced motor data are not memorised and the AMA must be restarted. Only the "Offline" mode is currently available with the "SRM" control. If the advanced data for the REEL SuPremE ${ }^{\oplus}$ motor cannot be calculated the alarm "A16 Lack of adequate motor data" is generated. Check the data on the motor nameplate of the REEL SuPremE ${ }^{\oplus}$ motor.	Max.: /

Section 3-2-2: Thermal protection

Parameter		Description	Setting
$3-2-2-1$ PTC protection [C]	Enabling of PTC alarm management.		Default: On
	Function Off	Description	
		PTC protection disabled.	Min.: /
	On	When the threshold set in par. 3-2-2-2 is exceeded the drive stops and signals A6 "PTC motor protection".	Max.: \|/
3-2-2-2 PTC threshold value [c]	Threshold value in [Ohm] for triggering the PTC alarm (A6) and PTC warning (W4). ThePTC alarm must be enabled through parameter 3-2-2-1. Parameter visible with PTC protection active (Par. 3-2-2-1 $=O n)$.		Default: 1330 [Ohm]
			Min.: 0 [Ohm]
			Max.: 7500 [Ohm]
3-2-2-3 Motor I2T protection [c]	Selection of the I2T alarm trigger mode.		Default: /
	Function	Description	
	Alarm	The drive stops and signals "A5" when the I2T counter reaches 90%. The duration of the count can be set in parameter 3-2-2-4.	Min.: /
	Speed reduction	The drive reduces the speed when the 12T count reaches 90%. The duration of the count can be set in parameter 3-2-2-4. If the motor speed drops below the threshold set in parameter 3-2-25 or the counter reaches 100% the drive stops and signals "A5".	Max.: /
3-2-2-4 I2T timing [c]	I2T count time [sec]. Once this time has elapsed it is possible to have I2T alarm trip or to reduce the speed in accordance with the setting in parameter 3-2-2-3.		Default: 60.0 [sec]
			Min.: 0.0 [sec]
			Max.: 60.0 [sec]
3-2-2-5 I2T stop speed [c]	Setting of the speed threshold below which the drive stops and signals alarm "A5". The motor speed must last for at least 1 [s] below this threshold, before signalling the alarm. Parameter only visible if parameter 3-2-2-3 is set at "Speed reduction".		$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \end{aligned}$
			Min.: Par. 3-2-3-3
			Max.: Par. 3-2-3-4
3-2-2-6 I2T Threshold [c]	Setting of threshold (percentage of nominal motor current) used for starting I2T counting. If increased it allows to delay the counting for I2T in order to consider the tolerances on nominal motor data.		$\begin{array}{\|l\|} \hline \text { Default: } \\ 100.0 \text { [\%] } \\ \hline \end{array}$
			Min.: $50.0 \text { [\%] }$
			Max.: $125.0 \text { [\%] }$

Section 3-2-3: Motor limitations

Parameter

Description
Setting

3-2-3-1 Allowed motor direction rotation	Setting the permitted direction of motor rotation. If the parameter is set at "Both" a positive speed reference will cause the motor to rotate clockwise (CW), whereas a negative reference will cause it to rotate counterclockwise (CCW). This parameter has no effect if the positioner is enabled (par. 3-7-1 "Positioning modes" other than "Off"). [c]	Min.:

Section 3-3: Inverter

Section 3-3-1: PWM

Parameter	Description	Setting
3-3-1-1 Switching frequency [c]	Setting of the drive's switching frequency $[\mathrm{kHz}]$. It is not possible to set a switching frequency less than $[\mathrm{kHz}]$ for the "SRM" control.	Default: 4
		Min.: 2
		Max.: 8
3-3-1-2 Random mode [c]	Enabling of the "random PWM" function. This function is used to reduce the acoustic noise emitted by the motor. Parameter not visible in [SRM] control.	Default: Off
		Min.: /
		Max.: /

Section 3-3-2: Ramps

Motor acceleration and deceleration are controlled through the parameters 3-3-2-2 "Acceleration time" and 3-3-2-3 "Deceleration time" set in [sec] and with reference to parameter 3-2-3-3 "Maximum motor speed". A secondary ramp is also available (parameters 3-3-2-4 and 3-3-2-5) that can be activated through the "Change ramp" function from digital input or by setting a value to which to change the ramp in parameter 3-3-2-10 "Change ramp value".
The JOG modes operate with a dedicated acceleration and deceleration ramp. Select linear acceleration ramp or S acceleration ramp via parameter 3-3-2-1 "Ramp type".

Figure 5: Linear acceleration ramp

With the S acceleration ramp you must also set parameters 3-3-2-8 "S ramp acceleration percentage" and 3-3-2-9 "S ramp deceleration percentage" expressed as a percentage with respect to the acceleration and deceleration time (parameters $3-3-2-2 / 3-3-2-3$ or $3-3-2-4 / 3-3-2-5$). This is how the acceleration profile is defined.

Figure 6: S acceleration ramp

Parameter		Description	Setting
3-3-2-1 Ramp type [c]	Setting the type of ramp:		Default: Linear
	Function	Description	
	Linear	The drive will accelerate following a linear profile with uniform acceleration.	Min.: /
	S ramp	The drive will accelerate following an S profile with trapezoidal acceleration.	Max.: /
3-3-2-2 Acceleration time [c]	Acceleration ramp time. The motor will employ the time expressed in this parameter to go from stop to the maximum speed expressed in par. 3-2-3-4 "Maximum motor speed".		Default: $3.0 \text { [sec] }$
			Min.: $0.0 \text { [sec] }$
			$\begin{array}{\|l\|} \hline \text { Max.: } \\ 600.0 \text { [sec] } \end{array}$
3-3-2-3 Deceleration time [c]	Deceleration ramp time. The motor will employ the time expressed in this parameter to go from the maximum speed expressed in par. 3-2-3-4 "Maximum motor speed" to stop.		Default: $3.0 \text { [sec] }$
			$\begin{aligned} & \text { Min.: } \\ & 0.0 \text { [sec] } \end{aligned}$
			Max.: 600.0 [sec]
3-3-2-4 Secondary acceleration time [c]	Secondary acceleration ramp time, activated through the "Change ramp" function from digital input or par. 3-3-2-10. The motor will employ the time expressed in this parameter to go from stop to the maximum speed expressed in par. 3-2-3-3 "Maximum motor speed".		Default: $3.0[\mathrm{sec}]$
			Min.: $0.0[\mathrm{sec}]$
			Max.: 600.0 [sec]

Parameter	Description	Setting
3-3-2-5 Secondary deceleration time	Secondary deceleration ramp time, activated through the "Change ramp" function from digital input or par. 3-3-2-10. The motor will employ the time expressed in this parameter to go from the maximum speed expressed in par. 3-2-3-3 "Maximum motor speed" to zero.	Default: $3.0 \text { [sec] }$
		Min.: 0.0 [sec]
[c]		Max.: 600.0 [sec]
3-3-2-6 JOG ramp time [c]	Acceleration ramp time for JOG. The motor will employ the time expressed in this parameter to go from stop to the maximum speed expressed in par. 3-2-3-4 "Maximum motor speed" when the JOG reference is activated.	Default: 3.0 [sec]
		Min.: 0.0 [sec]
		Max.: 600.0 [sec]
3-3-2-7 Quick stop deceleration time [c]	Quick deceleration ramp time. The motor will employ the time expressed in this parameter to go from the maximum speed expressed in par. 3-2-3-3 "Maximum motor speed" to zero when the quick stop function is activated. Quick stop can be selected via the function from digital input or the fieldbus.	Default: 3.0 [sec]
		$\begin{aligned} & \text { Min.: } \\ & 0.0[\mathrm{sec}] \\ & \hline \end{aligned}$
		Max.: 600.0 [sec]
3-3-2-8 S ramp acceleration time [c]	Setting of the S ramp acceleration time. Expressed as a percentage of the acceleration ramp in use. Parameter visible with " S ramp" set in par. 3-3-2-1.	$\begin{aligned} & \text { Default: } \\ & 50.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$
3-3-2-9 S ramp deceleration time [c]	Setting of the S ramp deceleration time. Expressed as a percentage of the acceleration ramp in use. Parameter visible with "S ramp" set in par. 3-3-2-1.	Default: 50.0 [\%]
		Min.: $0.0 \text { [\%] }$
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$
3-3-2-10 Switch ramp value [c]	Setting of the speed to which the drive switches automatically from the primary to the secondary ramp and vice versa. The unit of measurement depends on the setting of parameter 3-1-1: $[\mathrm{Hz}]$ or [rpm]. If the value is set at 0.0 , the function is deactivated.	Default: $0.0[\mathrm{~Hz}]$
		Min.: $0.0[\mathrm{~Hz}]$ 0 [rpm]
		Max.: Par. 3-2-3-4

Section 3-3-3: Skip reference

Through this function it is possible to select up to 4 speed intervals defined in Par. 3-3-3-1 to par 3-3-3-4 and 3-3-3-5 "Delta skip" in which the drive will never command the motor except for transitory periods defined by the acceleration and deceleration ramps.

Figure 7: Skip reference

Min.:
$0.0[\mathrm{~Hz}]$
0 [rpm]
Max.:
Par. 3-2-3-4
3-3-3-2
Reference skip 2
Speed 2 at which the drive will never command the motor. The unit of measurement depends on the setting in parameter 3-1-2: [Hz] or [rpm].
[C]
3-3-3-3
Reference skip 3
[c]

Default:
0.0 [Hz]

Min.:
0.0 [Hz] 0 [rpm]
Max.:
Par. 3-2-3-4
Default:
$0.0[\mathrm{~Hz}]$
Min.:
$0.0[\mathrm{~Hz}]$
0 [rpm]
Max.:
Par. 3-2-3-4

Parameter	Description	Setting
3-3-3-4 Reference skip 4	Speed 4 at which the drive will never command the motor. The unit of measurement depends on the setting in parameter 3-1-2: $[\mathrm{Hz}]$ or $[\mathrm{rpm}]$.	Default: 0.0 [Hz]
[c]		Min.: $0.0[\mathrm{~Hz}]$ 0 [rpm]
		Max.: Par. 3-2-3-4
$\begin{aligned} & \text { 3-3-3-5 } \\ & \text { Delta skip } \\ & \text { [c] } \end{aligned}$	Around the set speeds at which the drive will never command the motor. The unit of measurement depends on the setting in parameter 3-1-2: [Hz] or [rpm].	$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \end{aligned}$
		Min.: $0.0[\mathrm{~Hz}]$ 0 [rpm]
		Max.: $10.0[\mathrm{~Hz}]$ 600 [rpm]

Section 3-3-4: V/f control for asynchronous motors
Menu visible in "V/f" control.

Parameter	Description	Setting
3-3-4-1 V/f Boost V0 [c]	Characteristic V/f setup. Voltage value applied to the motor at $0[\mathrm{~Hz}]$, serves to apply a voltage boost to compensate for the motor RI. Expressed as a [\%] of par. 3-2-1-4.	$\begin{aligned} & \hline \text { Default: } \\ & 2.0 \text { [\%] } \\ & \hline \end{aligned}$
		Min.: $0.0 \text { [\%] }$
		$\begin{aligned} & \text { Max.: } \\ & 15.0 \text { [\%] } \\ & \hline \end{aligned}$
$3-3-4-2$ V/f V1 [c]	Characteristic V/f setup. Voltage applied to the motor at frequency F1. Expressed as a [\%] of par. 3-2-1-4.	$\begin{aligned} & \text { Default: } \\ & 20.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$
$3-3-4-3$ V/f F1 [c]	Characteristic V/f setup. Reference frequency for the elaboration of a "broken line" that alters the linear V/F ratio. Expressed as a [\%] of par. 3-2-3-4.	$\begin{aligned} & \text { Default: } \\ & 20.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$
3-3-4-4 V/f V2 [c]	Characteristic V/f setup. Voltage applied to the motor at frequency F2. Expressed as a [\%] of par. 3-2-1-4.	$\begin{aligned} & \text { Default: } \\ & 40.0 \text { [\%] } \\ & \hline \end{aligned}$
		Min.: $0.0 \text { [\%] }$
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$
3-3-4-5 V/f F2 [c]	Characteristic V/f setup. Reference frequency for the elaboration of a "broken line" that alters the linear V/F ratio. Expressed as a [\%] of par. 3-2-3-4.	$\begin{aligned} & \text { Default: } \\ & 40.0 \text { [\%] } \end{aligned}$
		Min.: 0.0 [\%]
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$

Parameter Description		Setting
3-3-4-6 V/f V3 [c]	Characteristic V/f setup. Voltage applied to the motor at frequency F3. Expressed as a [\%] of par. 3-2-1-4.	Default: $80.0 \text { [\%] }$
		$\begin{aligned} & \hline \text { Min.: } \\ & 0.0 \text { [\%] } \\ & \hline \end{aligned}$
		Max.: $100.0 \text { [\%] }$
$\begin{aligned} & 3-3-4-7 \\ & \text { V/f F3 } \\ & \text { [c] } \end{aligned}$	Characteristic V/f setup. Reference frequency for the elaboration of a "broken line" that alters the linear V/F ratio. Expressed as a [\%] of par. 3-2-3-4.	Default: $80.0 \text { [\%] }$
		Min.: $0.0 \text { [\%] }$
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$
$\begin{aligned} & 3-3-4-8 \\ & \text { V/f V4 } \\ & {[c]} \end{aligned}$	Characteristic V/f setup. Voltage applied to the motor at frequency F3. Expressed as a [\%] of par. 3-2-1-4.	Default: $100.0 \text { [\%] }$
		Min.: $0.0 \text { [\%] }$
		Max.: $100.0 \text { [\%] }$
$\begin{aligned} & 3-3-4-9 \\ & \text { V/f F4 } \\ & \text { [c] } \end{aligned}$	Characteristic V/f setup. Reference frequency for the elaboration of a "broken line" that alters the linear V/F ratio. Expressed as a [\%] of par. 3-2-3-4.	Default: $100.0 \text { [\%] }$
		Min.: $0.0 \text { [\%] }$
		Max.: $100.0 \text { [\%] }$

Section 3-3-5: Vector control for asynchronous motors
Menu visible in "Vector" control.

Parameter	Description	Setting
$\begin{aligned} & 3-3-5-1 \\ & \mathrm{Rs} \\ & {[\mathrm{~s}]} \end{aligned}$	Stator phase resistance.	Default: 0.0000 [Ohm]
		Min.: 0.0000 [Ohm]
		$\begin{aligned} & \text { Max.: } \\ & 32.0000 \text { [Ohm] } \end{aligned}$
$\begin{aligned} & 3-3-5-2 \\ & \mathrm{Ls} \\ & {[\mathrm{~s}]} \end{aligned}$	Stator phase inductance.	Default: $0.0[\mathrm{mH}]$
		Min.: $0.0[\mathrm{mH}]$
		Max.: $6553.5[\mathrm{mH}]$
$\begin{aligned} & \hline \text { 3-3-5-3 } \\ & \mathrm{Tr} \\ & {[\mathrm{~s}]} \end{aligned}$	Rotor time constant.	Default: 0.0 [msec]
		Min.: 0.0 [msec]
		Max.: 6553.5 [msec]
$\begin{aligned} & 3-3-5-4 \\ & \mathrm{Km} \\ & {[\mathrm{~s}]} \end{aligned}$	Magnetic coupling coefficient between stator and rotor.	$\begin{aligned} & \text { Default: } \\ & 0.0000 \end{aligned}$
		Min.: 0.0000
		$\begin{aligned} & \text { Max.: } \\ & 1.0000 \end{aligned}$

Section 3-3-6: Vector control for synchronous motors

Future implementation.

Section 3-3-7: Vector control for synchronous reluctance motors
Section visible in "SRM" control.

Parameter	Description	Setting
$\begin{aligned} & \text { 3-3-7-1 } \\ & \text { Rs } \\ & {[s]} \end{aligned}$	Stator phase resistance.	Default: $0.0000 \text { [Ohm] }$
		Min.: $0.0000 \text { [Ohm] }$
		Max.: $32.0000[\mathrm{Ohm}]$
3-3-7-2 Ldset [s]	Flux-Set nominal value.	Default: 0.0
		$\begin{aligned} & \hline \text { Min.: } \\ & 0.0 \\ & \hline \end{aligned}$
		Max.: 25000.0
3-3-7-3 Injection [s]	Amplitude of the injected signal used by the SRM control for detecting the speed at low speed.	Default: 0.0
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 1000.0 \end{aligned}$
$\begin{aligned} & 3-3-7-4 \\ & \text { KLS } \\ & {[\mathbf{s}]} \end{aligned}$	Gain of slow speed models of SRM motors in slow speed operating modes.	Default: 0.0
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \end{aligned}$
		Max.: 5000.0
$\begin{aligned} & 3-3-7-5 \\ & \text { KHS } \\ & \text { [s] } \end{aligned}$	Gain of high speed models of SRM motors in slow speed operating modes.	Default: 0.0
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 5000.0 \end{aligned}$
$\begin{aligned} & 3-3-7-6 \\ & \mathrm{KHH} \\ & {[\mathbf{s}]} \end{aligned}$	Gain of high speed models of SRM motors in high speed operating modes.	Default: 0.0
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 5000.0 \end{aligned}$
3-3-7-7 KpTrack [s]	Settings of the Sensorless tracking PI controller. These parameters, together with KLS - KHS - KHH detect the motor electric angle used for the orientation of the sensorless control.	Default: 0.0
		$\begin{aligned} & \text { Min.: } \\ & 0.0 \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 9999.0 \end{aligned}$
3-3-7-8 KiTrack [s]	Settings of the Sensorless tracking PI controller. These parameters, together with KLS - KHS - KHH detect the motor electric angle used for the orientation of the sensorless control.	$\begin{aligned} & \text { Default: } \\ & 0.0 \end{aligned}$
		$\begin{aligned} & \hline \text { Min.: } \\ & 0.0 \\ & \hline \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 9999.0 \\ & \hline \end{aligned}$

REEL

| Parameter | Description | Setting |
| :--- | :--- | :--- | :--- |
| 3-3-7-9
 Noise reduction
 [c] | Enabling of the reduction of the overmodulation signal based on
 the load demand on the motor. This results in reduced noise of the
 system at low speed. | Default:
 Off |
| | | Min.: |
| l | | |

Section 3-3-8: Motor control settings

Parameter		Description	Setting
3-3-8-1 Torque control mode [c]	Selection of torque control mode:		Default: Off
	Function	Description	
	Off	Torque control disabled.	Min.: /
	Feed forward	This function controls a percentage of the current that creates open loop torque.	
	Estimated torque	This function controls the torque delivered through the PI. The feedback comes from the estimated torque of the control.	Max.: /
	Parameter visible in [SRM] or [Vector] control.		
3-3-8-2 Field weakening proportional gain [s]	Proportional gain constant of the PI controller to optimise the field weakening performance or performance in the presence of a weak mains voltage.		Default: 10.0
			$\begin{aligned} & \text { Min.: } \\ & 0.0 \end{aligned}$
			Max.: 9999.0

REEL

Parameter		Sescription		Defting
3-3-8-3 Field weakening integral gain [s]	Integral gain constant of the PI controller to optimise the field weakening performance or performance in the presence of a weak mains voltage.	1.0		
3-3-8-4 Speed compensation	Min.: Asynchronous motor slip compensation. Parameter visible in [V/F] or [Vector] control and can only be modified if par. 3-1-1 is set on "rpm". Parameter sets automatically when par. 3-1-1 is modified (rpm: Hz = 0.0\%; Hz: rpm =100.0\%).	Max.: [s]		

Section 3-3-8-5: motor control PID

This menu contains the parameters for regulating the PID controllers that control the motors.

| Parameter | | |
| :--- | :--- | :--- | :--- |
| 3-3-8-5-1
 Kpl | Proportional K current feedback loop. | Setting |
| [c] | | Default: |

Parameter	Description	Setting
$\begin{aligned} & 3-3-8-5-6 \\ & \text { Kiw } \\ & {[c]} \end{aligned}$	Integral K speed feedback loop. Parameter visible in [SRM] or [Vector] control.	Default: 0.0
		Min.: 0.0
		Max.: 9999.0
$\begin{aligned} & 3-3-8-5-7 \\ & \mathrm{Kdw} \\ & {[\mathrm{c}]} \end{aligned}$	Derivative K speed feedback loop. Parameter visible in [SRM] or [Vector] control.	Default: 0.0
		$\begin{array}{\|l\|} \hline \text { Min.: } \\ 0.0 \end{array}$
		Max.: 9999.0
$\begin{aligned} & 3-3-8-5-8 \\ & \text { Tdw } \\ & {[c]} \end{aligned}$	Filtering time of the derivative action on the speed feedback loop. Parameter visible in [SRM] or [Vector] control.	$\begin{aligned} & \text { Default: } \\ & 0.1 \text { [sec] } \end{aligned}$
		Min.: 0.0 [sec]
		$\begin{aligned} & \text { Max.: } \\ & 30.0 \text { [sec] } \end{aligned}$
$\begin{aligned} & 3-3-8-5-9 \\ & \text { KpT } \\ & \text { [c] } \end{aligned}$	Proportional K torque feedback loop. Parameter visible in [SRM] or [Vector] control.	Default: 100.0
		$\begin{array}{\|l\|} \hline \text { Min.: } \\ 0.0 \end{array}$
		Max.: 9999.0
$\begin{aligned} & 3-3-8-5-10 \\ & \text { KiT } \\ & \text { [c] } \end{aligned}$	Integral K torque feedback loop. Parameter visible in [SRM] or [Vector] control.	Default: 10.0
		$\begin{aligned} & \hline \text { Min.: } \\ & 0.0 \end{aligned}$
		Max. 9999.0

Section 3-3-9: Feedback

Future implementation

Section 3-3-10: Motor flying start

The "motor flying start" function enables the inverter to control a motor whose shaft is rotating due to external causes. The function synchronises the output frequency of the inverter at the motor's rotating speed, without transmitting significant torque to the motor shaft.
At each startup the inverter performs the "motor flying start" sequence by injecting the current defined in parameter " $3-3-10-3$ " for the amount of time indicated in parameter " $3-3-10-2$ ". This search stage where the motor rotation speed is recognized is followed by a synchronization stage where the motor is piloted without producing torque. The total time necessary to start the motor could therefore be greater than the time indicated in the parameter "Flying start time". The "flying start" function for asynchronous motors is only capable of detecting the rotation if the real speed is in the same direction as the setpoint speed. This does not apply to "REEL SuPremE ${ }^{\oplus}$ " motors. For a good recognition of rotation for an asynchronous motor a time of 2-4 s is required with an injected current of $25 \%-40 \%$.
REEL SuPremE ${ }^{\circledR}$ motors can achieve good results even with shorter times and lower currents.

Higher time values obviously correspond to greater precision but this affects the motor startup time. An increase in the injected current also has a positive effect on the precision but it produces braking torque that could cause overvoltage in the inverter and consequently trigger the relevant alarm.

Parameter		Description	Setting
3-3-10-1 Flying start enable [c]	Enabling of the motor flying start function.		Default: Off Min.:
	Function	Description	
	Off	Function disabled.	
	On	Function enabled.	Max.:
3-3-10-2 Time for flying start [c]	Time in which the inverter performs the motor rotation speed search cycle.		Default: 3.0 [sec]
			Min.: $0.0 \text { [sec] }$
			$\begin{aligned} & \text { Max.: } \\ & 20.0[\mathrm{sec}] \end{aligned}$
3-3-10-3 Current for flying start [c]	Defines the current injected into the motor for the recognition of the rotating speed. Parameter expressed as a [\%] of par 3-2-1-6 "Motor rated current".		Default: $20.0 \text { [\%] }$
			Min.: $10.0 \text { [\%] }$
			Max.: $45.0 \text { [\%] }$

Section 3-3-11: Advanced settings

Parameter		Description			Setting
3-3-11-1Drive size[c]	Displays the Drive size				Default:
	Drive size	Power [kW]	Inom [A]	Imax [A]	
	Size A				
	1.0	0.37	1.3	2.0	
	2.0	0.55	1.8	2.7	
	3.0	0.75	2.5	3.8	
	4.0	1.1	3.5	5.3	
	5.0	1.5	4.9	7.4	
	Size B				Min.: /
	6.0	2.2	6.0	9.0	
	7.0	3.0	8.0	12.0	
	8.0	4.0	10.0	15.0	
	Size C				
	9.0	5.5	14.0	21.0	
	10.0	7.5	18.0	27.0	
	11.0	11.0	26.0	39.0	
	Size D				
	12.0	15.0	34.5	51.8	Max.: /
	13.0	18.5	44.0	66.0	
	14.0	22.0	51.0	76.5	
	15.0	30.0	68.0	102.0	
	Size E				
	16.0	37.0	84.0	126.0	
	17.0	45.0	101.0	151.5	
	18.0	55.0	120.0	180.0	
	Read-only parameter.				
3-3-11-2 Drive size power [c]	Display of the power size. Read-only parameter.				Default: /
					Min.: $0.370[\mathrm{~kW}]$
					Max.: $55.000[\mathrm{~kW}]$
3-3-11-3 DC-Link offset [c]	Calibration offset for reading of DC-Link bus. Read-only parameter.				Default: 0 [V]
					$\begin{aligned} & \text { Min.: } \\ & -100 \text { [V] } \\ & \hline \end{aligned}$
					Max.: 100 [V]
3-3-11-4 Brake resistor time $[\mathrm{c}]$	Brake resistor activation time [msec] in time frame of 10 [sec]. If set at 0 [msec], control of the brake resistor is disabled. If set at 10000 [msec] the result is continuous use of braking and alarm A11 will never be triggered. To select the braking resistor according to your requirements see the installation and design manual. Parameter 3-3-11-9 must be selected in "Braking chopper" for the proper operation.				Default: 0 [msec]
					Min.: 0 [msec]
					Max.: 10000 [msec]

REEL

Parameter	Description		Setting
3-3-11-5 Lock time [c]	Lock time for the motor after an alarm or disabling of the PWM with the motor rotating. If the "motor flying start" function is not enabled this parameter prevents the motor from enabling while it is potentially rotating. The actual waiting time is calculated linearly as the ratio between the nominal speed to which the parameter refers and the speed at which the motor was rotating.		Default: 0.0 [sec]
			Min.: 0.0 [sec]
			Max.: 600.0 [sec]
3-3-11-6 Dead-time compensation [s]	Enabling of the IGBT dead times.		Default: Off
	Function	Description	
	Off	Function disabled.	Min.: /
	On	Compensates for the distortion caused by the dead times of the IGBT.	Max.: /
	In [V/F] control it can have a big effect for a stable operation without load. In [Vector] or [SRM] it can affect the control performance and efficiency.		
3-3-11-7 Efficient modulation [s]	Enable command for the "Efficient Modulation" function. This reduces inverter losses at the expense of increased motor noise due to the greater output current ripple.		Default: Off
	Function	Description Function disabled.	Min.: /
	Off		Max.: /
	On	Function enabled.	
3-3-11-9 Brake-control mode [C]	Selects how to handle the motor in case of brake request.		Default: Braking torque limitation
	Function	Description	
	Braking torque limitation	If the motor is braking and the DC-bus voltage exceed the Warning, the inverter sets zero braking torque in order to bring the voltage inside allowed limits.	Min.: /
	Braking chopper	If the motor is braking and the DC-bus voltage exceed the Warning, the brake resistor is enabled in order to bring the voltage inside allowed limits. Parameter 3-3-11-4 must be set to a proper value.	Max.: /
3-3-11-10 Filter on estimated speed [c]	Filtering on estimated speed. Increasing this cut-off value will return a faster speed response but with higher estimation noise.		$\begin{aligned} & \text { Default: } \\ & 10.0[\mathrm{~Hz}] \end{aligned}$
			$\begin{aligned} & \text { Min.: } \\ & 1.0[\mathrm{~Hz}] \end{aligned}$
			$\begin{aligned} & \text { Max.: } \\ & 100.0[\mathrm{~Hz}] \end{aligned}$

REEL

Section 3-4: Inputs and outputs

Section 3-4-1: Analog inputs

Parameter		Description	Setting
3-4-1-1 AN1 type [c]	Type of analog input1.		Default:
	Function	Description	
	0-10 V	0.00 [V] = 0 [\%]; 10.00 [V] = 100 [\%].	Min.:
	$4-20 \mathrm{~mA}$	4.0 [mA] $=0$ [\%]; 20.0 [mA] = 100 [\%]	
	0-20 mA	0.0 [mA] $=0$ [\%]; 20.0 [mA] $=100[\%]$.	Max.:
	$-10 \div+10 \mathrm{~V}$ -	-10.00 [V] = 0 [\%]; 10.00 [V] = 100 [\%].	
3-4-1-2 AN1 offset [s]	Calibration offset of analog signal 1.		Default: 0.0 [mA]
			$\begin{array}{\|l\|} \hline \text { Min.: } \\ -24.0[\mathrm{~mA}] \\ 12.00[\mathrm{~V}] \\ \hline \end{array}$
			Max.: 24.0 [mA] -12.00 [V]

Parameter		Description	Setting
$3-4-1-3$ AN1 gain [s]	Calibration gain of analog signal 1. Calibration of the gain must be carried out at 90% of the full scale after having calibrated the corresponding offset.		$\begin{aligned} & \text { Default: } \\ & 1.0000 \end{aligned}$
			$\begin{aligned} & \text { Min.: } \\ & 0.5000 \end{aligned}$
			$\begin{aligned} & \text { Max.: } \\ & 2.0000 \end{aligned}$
3-4-1-4 AN2 type [c]	Type of analog input 2.		Default:$0-20 \mathrm{~mA}$
	Function	Description	
	0-10 V	$0.00[\mathrm{~V}]=0$ [\%]; $10.00[\mathrm{~V}]=100[\%]$.	Min.: /
	4-20 mA	$4.0[\mathrm{~mA}]=0[\%] ; 20.0[\mathrm{~mA}]=100[\%]$ Below 4 [mA] alarm A14 "Broken signal cable" is generated.	
	0-20 mA	$0.0[\mathrm{~mA}]=0$ [\%]; 20.0 [mA] = 100 [\%].	Max.: /
	$-10 \div+10 \mathrm{~V}$ -	$-10.00[\mathrm{~V}]=0$ [\%]; 10.00 [V] = 100 [\%].	
3-4-1-5 AN2 offset [s]	Calibration offset of analog signal 2. Calibration of the offset must be carried out at 90% of the full scale with the corresponding unity gain. The unit of measurement displayed depends on the setting in parameter 3-4-1-4: [V] or [mA].		Default: $0.0[\mathrm{~mA}]$
			Min.: $\begin{aligned} & -24.0[\mathrm{~mA}] \\ & 12.00[\mathrm{~V}] \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { Max.: } \\ & 24.0[\mathrm{~mA}] \\ & -12.00[\mathrm{~V}] \end{aligned}$
$3-4-1-6$ AN2 gain [s]	Calibration gain of analog signal 2. Calibration of the gain must be carried out at 90% of the full scale after having calibrated the corresponding offset.		$\begin{aligned} & \text { Default: } \\ & 1.0000 \end{aligned}$
			$\begin{aligned} & \text { Min.: } \\ & 0.5000 \\ & \hline \end{aligned}$
			$\begin{aligned} & \text { Max.: } \\ & 2.0000 \end{aligned}$
3-4-1-7 AN3 type [c]	Type of analog input 3.		Default:$0-20 \mathrm{~mA}$
	Function Description		
	0-10 V	$0.00[\mathrm{~V}]=0$ [\%]; 10.00 [V] = 100 [\%].	Min.: /
	4-20 mA	4.0 [mA] = 0 [\%]; $20.0[\mathrm{~mA}]=100$ [\%] Below 4 [mA] alarm A14 "Broken signal cable" is generated.	
	0-20 mA	0.0 [mA] = 0 [\%]; 20.0 [mA] = 100 [\%].	Max.: /
	-10 $\div+10 \mathrm{~V}$ -	-10.00 [V] = 0 [\%]; 10.00 [V] = 100 [\%].	
	Parameter visible with IO "FX-I/O-A" expander board connected.		
3-4-1-8 AN3 offset [s]	Calibration offset of analog signal 3. Calibration of the offset must be carried out at 10% of the full scale with the corresponding unity gain. The unit of measurement displayed depends on the setting in parameter 3-4-1-7: [V] or [mA]. Parameter visible with IO "FX-I/O-A" expander board connected.		Default: $0.0[\mathrm{~mA}]$
			Min.: $\begin{aligned} & -24.0[\mathrm{~mA}] \\ & 12.00[\mathrm{~V}] \end{aligned}$
			Max.: $\begin{aligned} & 24.0[\mathrm{~mA}] \\ & -12.00[\mathrm{~V}] \end{aligned}$

Parameter	Description	Setting
3-4-1-9 AN3 gain [s]	Calibration gain of analog signal 3. Calibration of the gain must be carried out at 90% of the full scale after having calibrated the corresponding offset. Parameter visible with IO "FX-I/O-A" expander board connected.	$\begin{aligned} & \text { Default: } \\ & 1.0000 \end{aligned}$
		$\begin{array}{\|l\|} \hline \text { Min.: } \\ 0.5000 \\ \hline \end{array}$
		Max.: 2.0000
3-4-1-10 Maximum speed reference value [c]	Value of the speed reference value corresponding to 100% of the analog value. The unit of measurement depends on the setting in parameter 3-1-1: [Hz] or [rpm].	$\begin{aligned} & \text { Default: } \\ & 50.0[\mathrm{~Hz}] \end{aligned}$
		Min.: Par. 3-4-1-10
		Max.: Par. 3-2-3-4
3-4-1-11 Minimum speed reference value [c]	Value of the speed reference value corresponding to 0% of the analog value. The unit of measurement depends on the setting in parameter 3-1-2: [Hz] or [rpm].	$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \end{aligned}$
		$\begin{array}{l\|} \hline \operatorname{Min} .: \\ 3-2-3-3 \end{array}$
		Max.: Par. 3-4-1-9
3-4-1-12 Maximum torque reference value [c]	Setting of the torque reference value corresponding to 100% of the analog value [Nm]. Parameter visible in [SRM] or [Vector] control.	$\begin{aligned} & \text { Default: } \\ & 0.00 \text { [Nm] } \\ & \hline \end{aligned}$
		Min.: Par. 3-4-1-13
		Max.: Par. 3-2-3-5
3-4-1-13 Minimum torque reference value [c]	Setting of the torque reference value corresponding to 0% of the analog value [Nm]. Parameter visible in [SRM] or [Vector] control.	$\begin{aligned} & \text { Default: } \\ & 0.00[\mathrm{Nm}] \end{aligned}$
		Min.: 0.00 [Nm]
		Max.: Par. 3-4-1-12

Section 3-4-2: Digital inputs

Section 3-4-2-1: Digital input functions

Parameter	Description		Setting
$3-4-2-1-1$ DIN1 Function	Defines the function of digital input 1 :		Default: Start system
	Function	Description	
	Disabled	Varying the digital input in any way has no effect.	
	Start system	Commands the motor to start (input active) or stop (input inactive) via the ramps.	
	Change rotation direction	Reverses the rotation direction of the motor with input active. This selection is possible only with rotation direction set as "Both" (parameter 3-2-31)	
	Digital pot. +	With input active the digital potentiometer increments its value by one step expressed in par. 3-5-12-1 after a time expressed in parameter 3-5-12-2.	
	Digital pot. -	With input active the digital potentiometer decreases its value by one step expressed in par. 3-5-12-1 after a time expressed in parameter 3-5-12-2.	Min.: /
	Jog 1	With input active the motor commands the speed set in parameter $3-5-10-1$. If the motor is stopped it also commands the startup.	
	Jog 2	With input active the motor commands the speed set in parameter $3-5-10-12$. If the motor is stopped it also commands the startup.	
	Jog 3	With input active the motor commands the speed set in parameter $3-5-10-3$. If the motor is stopped it also commands the startup.	
	MultiReference Bit0	Bit 0 selector for MultiReference. (see menu 3-5-11).	Max.:/
	MultiReference Bit1	Bit 1 selector for MultiReference. (see menu 3-5-11).	
	MultiReference Bit2	Bit 2 selector for MultiReference. (see menu 3-5-11).	
	Speed/torque	Speed/torque control selector.	
	Reset alarms	Resets any active alarms with input active.	
	Bypass ramps	Disables the acceleration and deceleration ramps with input active.	
	External alert	If active it stops the motor and triggers alarm A7 "External alert". It can be used to signal a system fault that requires stopping the inverter.	
	Frequency input	If active, the drive can receive the speed reference through the frequency input. Settable only on DIN1. Input range: 0-100 [kHz], 24 V .	
		to be continued.	

Function	Description
$\begin{array}{l}\text { Sel AN output } \\ \text { Bit0 }\end{array}$	$\begin{array}{l}\text { Bit 0 selector of the analog output function } \\ \text { (see menu 3-4-4). }\end{array}$
$\begin{array}{l}\text { Sel AN output } \\ \text { Bit1 }\end{array}$	$\begin{array}{l}\text { Bit 1 selector of the analog output function } \\ \text { (see menu 3-4-4). }\end{array}$
Enable PWM	$\begin{array}{l}\text { If set, it enables the PWM modulation. } \\ \text { If "PWM On" or "EN1 On" are selected they } \\ \text { must be set separately. }\end{array}$
$\begin{array}{l}\text { Enable speed } \\ \text { ref. }\end{array}$	$\begin{array}{l}\text { If active, it enables the speed reference. } \\ \text { If "PWM On" or "EN1 On" are selected they } \\ \text { must be set separately. }\end{array}$
Enable PID	If active, it enables the process PID controller.
Change ramp	$\begin{array}{l}\text { Primary ramp (input inactive) or secondary } \\ \text { (input active) selector. }\end{array}$
Enable ramps	$\begin{array}{l}\text { If selected, it commands the enabling of the } \\ \text { ramps. If the DIN has been reset the speed } \\ \text { reference is 0 [rpm]. }\end{array}$
Freeze ramp	$\begin{array}{l}\text { If selected, with input active it freezes the speed } \\ \text { reference. }\end{array}$
Posi Start	$\begin{array}{l}\text { If Positioning controller is active, it will execute } \\ \text { the selected profile }\end{array}$
Posi Step	$\begin{array}{l}\text { If Positioning controller is active, it will resume } \\ \text { the profile previously stopped with an HALT } \\ \text { command. It allows to move to the next profile in } \\ \text { case that the Position Setpoint is reached and } \\ \text { the Start mode is set as "Step command". }\end{array}$
Posi Next	$\begin{array}{l}\text { If Positioning controller is active, it will stop the } \\ \text { profile in execution and load the next profile } \\ \text { without wait for the setpoint to be reached. The } \\ \text { Start mode of the profile must be set as "Next } \\ \text { command". }\end{array}$
Posi Tip+	$\begin{array}{l}\text { If Positioning controller is active, it will stop the } \\ \text { profile in execution and stop the motor with the } \\ \text { ramp selected in the profile. }\end{array}$
Posi Tip-	$\begin{array}{l}\text { If Positioning controller is active, it will move the } \\ \text { motor in the positive direction with a fixed speed } \\ \text { set in parameter 3-7-2-11. }\end{array}$
Posi Step/Halt	$\begin{array}{l}\text { If Positioning controller is active, it will move the } \\ \text { motor in the negative direction with a fixed } \\ \text { speed set in parameter 3-7-2-11. }\end{array}$
$\begin{array}{l}\text { It implements in a unique command, the } \\ \text { commands "Posi Step" with level high and "Posi } \\ \text { Halt" with level low. }\end{array}$	
Posi start	
homing	$\begin{array}{l}\text { It starts the sequence for setting the initial } \\ \text { position (Homing) }\end{array}$
Setpoint.	
saved in the actual profile as position	

to be continued.

Parameter		Description	Setting
	Function	Description	
	Posi limit switch+	Used for connecting a limit switch for the maximum position	
	Posi limit switch-	Used for connecting a limit switch for the minimum position	
	Posi home switch	Used for connecting the sensor that gives the initial position (Homing)	
	Posi continuous ref- switch	Used for connecting the sensor that provides the continuous reference during the positioning. See 3-7-3-10 "Continuous Referencing"	
	Profile selection Bit0	Bit0 for selection of active positioning profile	
	Profile selection Bit1	Bit1 for selection of active positioning profile	
	Profile selection Bit2	Bit2 for selection of active positioning profile	
	Gearbox JOG+	With "Electric Gearbox" active, allows the correction of actual position with positive direction with the quantity set in parameter 3-10-2-7.	
	Gearbox JOG-	With "Electric Gearbox" active, allows the correction of actual position with negative direction with the quantity set in parameter 3-10-2-7.	
	PID Multireference Bit0	Bit 0 selector of the MultiReference relating to process PID (see menu 3-6-7).	
	PID Multireference Bit1	Bit 1 selector of the MultiReference relating to process PID (see menu 3-6-7).	
	PID Multireference Bit2	Bit 2 selector of the MultiReference relating to process PID (see menu 3-6-7).	
	System Start CW	Commands the motor to start (input active) or stop (input inactive) via the ramps and force the rotation direction CW. This input is visible only if parameter $3-2-3-1$ is set as "Both".	
	System Start CCW	Commands the motor to start (input active) or stop (input inactive) via the ramps and force the rotation direction CCW. This input is visible only if parameter 3-2-$3-1$ is set as "Both".	
	User settings selection	It loads the parameter set previously saved as "Parameter Set 1" in case of input low or "Parameter Set 2" with input high.	

Parameter	Description	Setting
3-4-2-1-2 DIN2 Function [c]	Defines the function of digital input 2 . See function 3-4-2-1-1.	Default: Reset
		Min.: /
		Max.:
3-4-2-1-3 DIN3 Function [c]	Defines the function of digital input 3 . See function 3-4-2-1-1.	Default: Disabled
		Min.: /
		Max.: /
3-4-2-1-4 DIN4 Function [c]	Defines the function of digital input 4. See function 3-4-2-1-1.	Default: Disabled
		Min.: /
		Max.: /
$3-4-2-1-5$ DIN-STO Function [c]	Input used for the STO. Read only parameter.	Default: STO Diagnostics
		Min.: /
		Max.:
3-4-2-1-6 HW-STO Function [c]	Input used for the STO. Read only parameter.	Default: Safety
		Min.: /
		Max.:
3-4-2-1-7 DIN6 Function [c]	Defines the function of digital input 6 . See function 3-4-2-1-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-B" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.:
3-4-2-1-8 DIN7 Function [c]	Defines the function of digital input 7 . See function 3-4-2-1-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-B" o "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /
$3-4-2-1-9$ DIN8 Function $[\mathrm{c}]$	Defines the function of digital input 8 . See function 3-4-2-1-1. Parameter visible with IO "FX-I/O-A" o "FX-I/O-B" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /

REEL

Section 3-4-2-2: Polarity of digital inputs

Parameter		Description	Setting
$3-4-2-2-1$ DIN1 polarity [c]	Defines the polarity of digital input 1 :		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min.:
	Negative $\quad 0 \mathrm{~V}$ input to activate the associated function.		Max.: /
3-4-2-2-2 DIN2 polarity [c]	Defines the polarity of digital input 2:		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min.: /
	Negative	0 V input to activate the associated function.	Max.: /
3-4-2-2-3 DIN3 polarity [c]	Defines the polarity of digital input 3:		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min.: /
	Negative		Max.: /
3-4-2-2-4 DIN4 polarity [c]	Defines the polarity of digital input 4:		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min.: /
	Negative	0 V input to activate the associated function.	Max.: /
3-4-2-2-5 DIN6 polarity [c]	Defines the polarity of digital input 6:		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min. /
	Negative $\quad 0 \mathrm{~V}$ input to activate the associated function.		Max.:/
3-4-2-2-6 DIN7 polarity [c]	Defines the polarity of digital input 7:		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min.: /
	Negative $\quad 0 \mathrm{~V}$ input to activate the associated function.		Max.: /
3-4-2-2-7 DIN8 polarity [c]	Defines the polarity of digital input 8:		Default: Positive
	Function	Description	
	Positive	24 V input to activate the associated function.	Min.: /
	Negative		
			Max.: /

Section 3-4-3: Digital and relay outputs

Parameter		Description	Setting
3-4-3-1 Relay function [c]	Defines the function of the relay output 1:		Default: Drive OK
	Function	Description	
	Disabled	Output disabled.	
	Rotating	Output active while motor is rotating. Input active with frequency greater than $0.5[\mathrm{~Hz}]$.	
	Mechanical brake	Output is active when the mechanical brake actuates. It must be selected for the "Mechanical Brake" function to be enabled." (see menu 3-4-5).	
			Min.: /
	Speed set reached	Output active when the motor reaches the setpoint speed.	
	Direction	Output active when the motor rotates clockwise (CW) and inactive when it rotates counter clockwise (CCW).	
	Alarm	Output active if the drive is in alarm state.	
	Warning	Output active if the drive is in warning state.	Max.: /
	Drive thermal warning	Output active if the drive is in overheated state.	
	Motor thermal warning	Output active if the drive is in motor 12T count state.	
	Drive Ok	Output active if the drive is not in alarm or warning state.	
	STO	Output active if the drive is in STO state.	
	Position setpoint reached	Output active when the motor reaches the setpoint position, in positioning mode.	
	Multi-Drive cascade control	The output is controlled by the Multi-Drive function (see menu 3-6-21).	
3-4-3-2 Relay 2 function [c]	Defines the function of relay output 2 . See function 3-4-3-1.		Default: Rotating
			$\begin{aligned} & \text { Min.: } \\ & / \end{aligned}$
			Max.: /
3-4-3-3 Relay 3 function [c]	Defines the function of relay output 3. See function 3-4-3-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board connected.		Default: Disabled
			Min.: /
			Max.: /

3-4-3-4 Relay 4 function [c]	Defines the function of relay output 4. See function 3-4-3-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /
3-4-3-5 Relay 5 function [c]	Defines the function of relay output 5. See function 3-4-3-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /
3-4-3-6 Relay 6 function [c]	Defines the function of relay output 6. See function 3-4-3-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /
3-4-3-7 Relay 7 function [c]	Defines the function of relay output 7. See function 3-4-3-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /
3-4-3-8 Relay 8 function [c]	Defines the function of relay output 8. See function 3-4-3-1. Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board connected.	Default: Disabled
		Min.: /
		Max.: /
3-4-3-9 Switch on delay [c]	Setting of the delay time for activation of the relay [sec].	Default: 0.5
		Min.: 0.0 [sec]
		Max.: 10.0 [sec]
3-4-3-10 Switch off delay $[\mathrm{c}]$	Setting of the delay time for deactivation of the relay [sec].	Default: 0.5
		Min.: 0.0 [sec]
		Max.: 10.0 [sec]

| Parameter | Description | Setting |
| :--- | :--- | :--- | :--- |
| 3-4-3-11
 Digital output 1
 function
 [c] | Defines the function of digital output 1. See function 3-4-3-1.
 Parameter visible with IO "FX-I/O-A" or "FX-I/O-C" expander board
 connected. | Default:
 Disabled |

Section 3-4-4: Analog outputs

The analog outputs enable the monitoring of the Inverter.
Four different process values can be assigned to the analog output.
The choice of the value to assign is made with two digital inputs.
For this purpose, program the digital inputs function on "Sel AN output Bit0" or "Sel AN output Bit01".

Active Selection	Sel AN output Bit1	Sel AN output Bit0
Analog Output function 1	0	0
Analog Output function 2	0	1
Analog Output function 3	1	0
Analog Output function 4	1	1

If no inputs are selected then the function expressed in par. 3-4-4-1 "Function 1 analog output 1 " is assigned to the analog output.
The type of analog output 1 selected in par. 3-4-4-5 must be in line with the type of output hardware selection made through the DIP-Switches present on the board next to the signal terminal block.

0-20 mA / 4-20 mA (Default)
DIP1 OFF - DIP2 OFF
0-10 V
DIP1 OFF - DIP2 ON
$0-100 \mathrm{kHz}$
DIP1 ON - DIP2 OFF

Parameter
3-4-4-1
Analog output 1 function 1
[c]

Defines function 1 of analog output 1

Function	Description
Disabled	Output disabled
Speed	The output value will be proportional to the speed at which the motor is running (if par. 3-2-3-1 = "Both": Min. = par. 3-2-3-4: Max. = par. 3-2-3-4; If par. 3-2-3-1 = "CW" or "CCW": Min. = par. 3-2-3-3; Max. = par. 3-2-3-4.
Current	The output value will be proportional to the passthrough current on the motor (Min. = 0 A; Max. = par. 3-2-3-2).
DC-Link voltage	The output value will be proportional to the DCLink voltage (Min. = 0 V; Max. = 1000 V).
Estimated torque	The output value will be proportional to the estimated torque of the motor shaft (Min. = 0 Nm; Max. = par. 3-2-3-5).
Mechanical power	The output value will be proportional to the mechanical power of the motor shaft (Min. $=0$ kW; Max. = par. 3-2-1-3 + 50\%).
PID Setpoint	The output value will be proportional to the active process PID Setpoint (Min. = 3-6-12; Max. = par. 3-6-11).
PID Feedback	The output value will be proportional to the process PID Setpoint (Min. = 3-6-12; Max. = par. 3-6-11).
Analog Input 1	The output value will be proportional to the analog input 1. The output range depends on the selection ($0-10 \mathrm{~V},+-10 \mathrm{~V}$)
Analog Input 2	The output value will be proportional to the analog input 2. The output range depends on the selection (0-10V, +-10V)
Analog Input 3	The output value will be proportional to the analog input 3. The output range depends on the selection (0-10V, +-10V)
Speed Setpoint	The output value will be proportional to the Speed setpoint (if par. 3-2-3-1 = "Both": Min = par. 3-2-3-1 = "CW" or "CCW": Min. = par. 3-2-33; Max. = par. 3-2-3-4).
Torque Setpoint	The output value is proportional to the torque setpoint when this mode is active $\text { (Min. = } 0 \text { Nm; Max. = par. 3-2-3-5). }$
Actual pos. setpoint	The output value is proportional to the actual position setpoint when the positioning function is active. (Min. = par. 3-7-2-7; Max. = par. 3-7-2-6).
Actual position	The output value is proportional to the actual position when the positioning function is active. (Min. = par. 3-7-2-7; Max. = par. 3-7-2-6).
+10V / 20mA	The output value is the max available value (+10V or 20 mA)

Setting
Default:
Speed

Min.:

Max.:

Parameter		Description	Setting
3-4-4-2 Analog output 1 function 2 [c]	Defines function 2 of analog output 1. See function 3-4-4-1.		Default: Current
			Min.: /
			Max.:
3-4-4-3 Analog output 1 function 3 [c]	Defines function 3 of analog output 1. See function 3-4-4-1.		Default: Mechanical power
			Min.:
			Max.:
3-4-4-4 Analog output 1 function 4 [c]	Defines function 4 of analog output 1. See function 3-4-4-1.		Default: Estimated torque
			Min.: /
			Max.:
$3-4-4-5$ Analog output 1 type	Defines the The configu output hard on the board	e of analog output 1. ion of this parameter must be in line with the type of re selection made through the DIP-Switches present next to the signal terminal block.	Default: 0-20 mA
[c]	Function	Description	Min.: /
	0-10 V	0 [\%] = 0 [V]; 100 [\%] = 10 [V] DIP1 OFF - DIP2 ON.	
	4-20 mA	$\begin{aligned} & 0[\%]=4[\mathrm{~mA}] ; 100[\%]=20[\mathrm{~mA}] \\ & \text { DIP1 OFF - DIP2 OFF. } \end{aligned}$	
	0-20 mA	$0[\%]=0[\mathrm{~mA}] ; 100[\%]=20[\mathrm{~mA}]$ DIP1 OFF - DIP2 OFF.	Max.: /
	$0-100 \mathrm{kHz}$	$0[\%]=0[\mathrm{kHz}] ; 100[\%]=100[\mathrm{kHz}]$ DIP1 ON - DIP2 OFF.	

Parameter	Description	Setting
3-4-4-8 Analog output 2 function 1 [c]	Defines function 1 of analog output 2. See function 3-4-4-1. Parameter visible with IO "FX-I/O-A" expander board connected.	Default: Speed
		Min.: /
		Max.: /
3-4-4-9 Analog output 2 function 2 [c]	Defines function 2 of analog output 2. See function 3-4-4-1. Parameter visible with IO "FX-I/O-A" expander board connected.	Default: Current
		$\begin{aligned} & \text { Min.: } \\ & / \end{aligned}$
		Max.: /
3-4-4-10 Analog output 2 function 3 [c]	Defines function 3 of analog output 2. See function 3-4-4-1. Parameter visible with IO "FX-I/O-A" expander board connected.	Default: Mechanical power
		$\begin{aligned} & \text { Min.: } \\ & \hline \end{aligned}$
		Max.: /
3-4-4-11 Analog output 2 function 4 [c]	Defines function 4 of analog output 2. See function 3-4-4-1. Parameter visible with IO "FX-I/O-A" expander board connected.	Default: Estimated torque
		Min.: /
		Max.: /
3-4-4-12 Analog output 2 type [c]	Defines the type of analog output 2.	Default: 0-20 mA
	Function Description	
	0-10 V $\quad 0$ [\%] = 0 [V]; 100 [\%] = 10 [V].	Min.: /
	$0-20 \mathrm{~mA}$, 0 [\%] $=0$ [mA] ; 100 [\%] = $20[\mathrm{~mA}]$.	
	$4-20 \mathrm{~mA} \quad 0[\%]=4[\mathrm{~mA}] ; 100[\%]=20[\mathrm{~mA}]$.	Max.:
	Parameter visible with IO "FX-I/O-A" expander board connected.	/

Section 3-4-5: Mechanical brake

Parameters for controlling the engage/disengage commands for the motor's built-in static brake (if installed).
It is enabled via parameter 3-4-5-1.
Operating logic:
Engage sequence: at each enabling (run), the drive commands the brake to engage immediately, but enables the speed control with a delay equal to the time set in parameter 3-4-5-2 "Mechanical brake engage time". This parameter must be set with a slightly longer time than the brake's mechanical engage time.
Disengage sequence: at each disabling of the drive, the motor is slowed down to zero rotations. Once the speed set in parameter $3-4-5-3$ "Brake activation speed" is reached, the brake is commanded to disengage and the drive disables immediately. The "Static brake" function is not applicable in applications that require the motor to support the load upon disengaging the mechanical brake.

Figure 8: Mechanical brake

Parameter		Description	Setting
3-4-5-1 Mechanical brake application [c]	Selection of the type of mechanical brake.		Defaul: Off
	Function	Description	
	Off	Functions disabled	Min.: /
	Static brake	Type of brake to use for application where the brake is not required to support the load when disengaged.	Max.: /
3-4-5-2 Open time mechanical brake [c]	Setting of the mechanical brake engage time.		Default: 1.0 [sec]
			Min.: $0.0 \text { [sec] }$
			$\begin{aligned} & \text { Max.: } \\ & 30.0 \text { [sec] } \end{aligned}$
3-4-5-3 Activate brake speed [c]	Setting of the activation speed for the mechanical brake. The unit of measurement depends on the setting in parameter 3-1-1: [Hz] or [rpm].		Default: $0.0 \text { [Hz] }$
			Min.: 0.0 [Hz] 0.0 [rpm]
			Max.: par. 3-2-3-4

Section 3-5: References

Figure 9: Diagram of the method for calculating the speed reference

Figure 10: Diagram of the method for calculating the torque reference

The diagrams above show the possible sources of the speed and torque references in "AUTO" operating mode.

Parameter
3-5-1
Speed reference
source
[c]
3-5-2
Main
reference 1
[c]

3-5-3
Main reference 2
[c]

Description
Selection of the source for the speed reference:

Function	Description
Primary reference	The setpoint is calculated by adding the setpoints of parameters 3-5-2, 3-5-3, 3-5-4 and the MultiReference and JOG setpoints. If the reference combination mode (parameter 3-5-9) is set on "Exclusive", the JOG and Multistep references impose their setpoint on the reference.
Fieldbus	The setpoint is received from fieldbus communication.

Selection of the first source for the primary reference.
It is added to the sources selected in par. 3-5-3 and par.3-5-4.

Function	Description
No function	Does not contribute to the calculation of the setpoint.
Analog input 1	Contributes with a value proportional to the percentage calculated from analog 1. (Min. $=0 \%=$ par. 3-2-3-3; Max. $=100 \%=$ par. 3-2-3-4). The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-1 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \% \mathrm{e}$ $10 \mathrm{~V}=100 \%$).
Analog input 2	Contributes with a value proportional to the percentage calculated from analog 2. (Min. $=0 \%=$ par. 3-2-3-3; Max. $=100 \%=$ par. 3-2-3-4). The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-4 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \% \mathrm{e}$ $10 \mathrm{~V}=100 \%$).
Analog input 3	Contributes with a value proportional to the percentage calculated from analog 3. (Min. $=0 \%=$ par. 3-2-3-3; Max. $=100 \%=$ par. 3-2-3-4). The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-4 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \% \mathrm{e}$ $10 \mathrm{~V}=100 \%$). Parameter visible with IO "FX-I/O-A" expander board connected.
Frequency input	Contributes with a value that is proportional to the frequency input.
Digital potentiometer	Contributes with a value that is calculated by the "Digital potentiometer" function (par. 3-5-11-1 to 3-5-11-3).

Selection of the second source for the primary reference. It is added to the sources selected in par. 3-5-2 and par. 3-5-4. See function par. 3-5-2.

REEL

Parameter		Description	Setting
3-5-4 Main reference 3 [c]	Selection of the third source for the primary reference. It is added to the sources selected in par. 3-5-2 and par.3-5-3. See function par. 3-5-2.		Default: No function
			Min.:
			Max.:
3-5-5 Torque reference source [c]	Selects the source for the torque reference:		Default: Secondary reference
	Function	Description	
	Secondary reference	Setpoint viene is calculated by adding the parameters 3-5-6, 3-5-7, 3-5-8 setpoints.	Min.: /
	FieldBus	The setpoint is received by Field Bus communication.	Max.: 1
3-5-6 Secondary reference 1 [c]	First source for the secondary reference. It is added to the sources selected in par. 3-5-7 and 3-5-8.		Default: No function
	Function	Description	
	No function	Does not contribute to the calculation of the setpoint.	
	Analog input 1	Contributes with a value proportional to the percentage calculated from analog 1. (Min. $=0 \%=$ par. 3-2-3-12; Max. $=100 \%=$ par. 3-2-3-13). The percentage is calculated based on the type of analog used (e.i. par. $3-4-1-1=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	Min.: /
	Analog input 2	Contributes with a value proportional to the percentage calculated from analog 2. (Min. $=0 \%=$ par. 3-2-3-12; Max. $=100 \%=$ par. 3-2-3-13). The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-4 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	
	Analog input 3	Contributes with a value proportional to the percentage calculated from analog 3. (Min. $=0 \%=$ par. 3-2-3-12; Max. $=100 \%=$ par. 3-2-3-13). The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-4 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$). Parameter visible with IO "FX-I/O-A" expander board connected.	Max.: /
	Frequency input	Contributes with a value that is proportional to the frequency input.	
3-5-7 Secondary Reference 2 [c]	Second source for the secondary reference. It is added to the sources selected in par. 3-5-6 and par.3-5-8. See function par. 3-5-6.		Default: No function
			Min.: /
			Max.: /

Parameter		Description	Setting
3-5-8 Secondary reference 3 [c]	Third source for the secondary reference. It is added to the sources selected in par. 3-5-7 and par.3-5-8. See function par. 3-5-6.		Default: No function
			Min.: /
			Max.:
$3-5-9$ Reference mode	Parameter for setting the reference combination mode:		Default: Exclusive
	Function	Description	
	Sum	The "Primary reference", "JOG" and "Multistep" references are added together.	Min.: /
[c]	Exclusive	The speed reference is calcuated according to the following hierarchy: - JOG - Multireference - Primary reference	Max.:

Section 3-5-10: JOG

If both the JOG and Multireference functions are set then the JOG function prevails over the Multireferences.

If several JOGs are activated they will be added together.

Parameter	Description	Setting
$\begin{array}{\|l} 3-5-10-1 \\ \text { JOG } 1 \end{array}$ [c]	Fixed speed 1 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it configure a digital input Din as Jog1.	$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \end{aligned}$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4
$\begin{aligned} & \text { 3-5-10-2 } \\ & \text { JOG 2 } \\ & {[\mathrm{c}]} \end{aligned}$	Fixed speed 2 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-2). To enable it configure a digital input Din as Jog2.	$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \end{aligned}$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4
$\begin{aligned} & \text { 3-5-10-3 } \\ & \text { JOG } 3 \\ & {[\mathrm{c}]} \end{aligned}$	Fixed speed 3 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-2). To enable it configure a digital input Din as Jog3.	Default: $0.0[\mathrm{~Hz}]$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4

Section 3-5-11: MultiReference

To select the various Multireferences configure 3 digital inputs respectively as "MultiReference Bit0", "MultiReference Bit1" and "MultiReference Bit2". The selection is made according to the table below:

Active selection	Multireference Bit2	Multireference Bit1	Multireference Bit0
Null	0	0	0
MultiReference 1	0	0	1
MultiReference 2	0	1	0
MultiReference 3	0	1	1
MultiReference 4	1	0	0
MultiReference 5	1	0	1
MultiReference 6	1	1	0
MultiReference 7	1	1	1

If both the JOG and MultiReference functions are set via the relevant parameters such as "Exclusive" then the JOG function prevails over the MultiReferences.

Parameter	Description	Setting
3-5-11-1 MultiReference 1 [c]	Digital reference 1 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Default: $0.0[\mathrm{~Hz}]$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4
3-5-11-2 MultiReference 2 [c]	Digital reference 2 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Default: $0.0[\mathrm{~Hz}]$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4
3-5-11-3 MultiReference 3 [c]	Digital reference 3 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Default: $0.0[\mathrm{~Hz}]$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4
3-5-11-4 MultiReference 4 [c]	Digital reference 4 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Default: $0.0 \text { [Hz] }$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4
3-5-11-5 MultiReference 5 [c]	Digital reference 5 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Default: $0.0[\mathrm{~Hz}]$
		Min.: par. 3-2-3-4
		Max.: par. 3-2-3-4

Parameter	Description	Setting
3-5-11-6 MultiReference 6 [c]	Digital reference 6 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Default: $0.0[\mathrm{~Hz}]$ par.: 3-2-3-4
3-5-11-7 MultiReference 7 [c]	Digital reference 7 expressed in [Hz] or [rpm] (according to the setting in par. 3-1-1). To enable it, configure "MultiReference Bit0/1/2" on 3 Din inputs.	Max.: par. 3-2-3-4

Section 3-5-12: Digital potentiometer

To use the "Digital potentiometer" function it is necessary to set two digital inputs in the "Digital pot. +" and "Digital pot. -" functions and set a source of the primary reference (par. 3-4-5-2 to 3-4-5-4) as "Digital potentiometer". The operation is explained in the figure below:

Figure 11: Digital potentiometer

Parameter	Description	Setting
3-5-12-4 Delay before ramp setpoint [c]	It defines the time that input "Digital Pot. +" or "Digital Pot. -" must be kept pressed before the reference start its variation with the defined ramp.	$\begin{aligned} & \text { Default: } \\ & 3.0 \text { [s] } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 0.0[\mathrm{~s}] \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 10.0[\mathrm{~s}] \end{aligned}$
3-5-12-5 Working range [c]	It defines the working range for this function	Default:
	Funzione Descrizione	al
	Bidirectional The reference is modified between the min. and the max. speed limit.	Min.:
	Unidirectional The reference is modified between the max. speed limit and zero.	
	This parameter is visible only if parameter 3-2-3-1 "Allowed motor direction" is set to "Both".	Max.: /

Section 3-5-13: Reference scaling

Function that enables the configuration of an analog input as speed reference gain.
Scaling factor $=\%$ source par. 3-5-13-2.
Multiply : Scaling factor > 50.0\%

Gain $=1+($ Reference scaling gain-1 $) x \frac{\text { Scaling factor }-50.0}{50.0}$

Divide: Scaling factor $\leq 50.0 \%$

$$
\text { Gain }=\frac{1}{1+(\text { Reference scaling gain }-1) \times \frac{(50.0-\text { Scaling factor })}{50.0}}
$$

Real speed = speed reference \times gain
EXAMPLE:

- Multiply
speed reference $=750 \mathrm{rpm}$
3-5-13-2 $=$ Analog input 2
$3-5-13-3=2.0$
Analog input $2=6 \mathrm{~V}=60 \%$

$$
\text { Gain }=1+(2.0-1) \times \frac{(60.0-50.0)}{50.0}=1.2
$$

Real speed $=750[\mathrm{rpm}] \times 1.2=900[\mathrm{rpm}]$
-Divide
speed reference $=750 \mathrm{rpm}$
3-5-13-2 = Analog input 2
$3-5-13-3=2.0$
Analog input $2=4 \mathrm{~V}=40 \%$

$$
\text { Gain }=\frac{1}{1+(2.0-1) \times \frac{(50.0-40.0)}{50.0}}=0.83
$$

Real speed $=750[\mathrm{rpm}] \times 0.83=622.5[\mathrm{rpm}]$

Parameter		Description	Setting
3-5-13-1 Reference scaling enable [c]	Enabling of the "Speed reference scaling" function.		Default: Off
	Function	Description	
	Off	"Speed reference scaling" function disabled.	Min.: /
	On	"Speed reference scaling" function enabled.	Max.: /
3-5-13-2 Scaling percentage source [c]	Selection of the source of the scaling percentage.		Default: No function
	Function	Description	
	No function	No source selected.	
	Analog input 1	Contributes with a value proportional to the percentage calculated from analog 1. The percentage is calculated based on the type of analog used (e.i. par. $3-4-1-1=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	
	Analog input 2	Contributes with a value proportional to the percentage calculated from analog 2. The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-4 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	Min.: /
	Analog input 3	Contributes with a value proportional to the percentage calculated from analog 3 . The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-4 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%)$. Parameter visible with 10 "FX-I/O-A" expander board connected.	Max.: /
	Frequency input	Contributes with a value that is proportional to the frequency input ($\mathrm{Min}=0[\mathrm{kHz}]=0[\%]$, Max. $=100[k H z]=100 \%)$.	
3-5-13-3 Reference scaling gain	Setting of the full scale for the scaling.		$\begin{aligned} & \text { Default: } \\ & 2.00 \end{aligned}$
			$\begin{aligned} & \text { Min.: } \\ & 2.00 \end{aligned}$
[c]			$\begin{aligned} & \text { Max.: } \\ & 20.00 \end{aligned}$

Section 3-6: Process PID

The drive has a built-in process PID that maintains the desired value by adjusting the output frequency of the drive when the load in the actuator varies.

Figure 12: Process PID

Parameter		Description	Setting
3-6-1 Process PID mode [c]	PID controller process mode:		Default: Off
	Function	Description	
	Off	PID controller disabled	Min.: /
	Positive correction	PID controller with positive input error (setpoint feedback), increases speed.	
	Negative correction	PID controller with positive input error (setpoint feedback), reduces speed.	$\begin{aligned} & \text { Max.: } \\ & / \end{aligned}$
3-6-2 PID param unit [c]	Setting of the unit of measurement for the setpoint and feedback of the process PID controller.		Default: Percentage
	Function	Description	
	Pressure	Units of measurement available: - bar [\%] - pounds per square inch [Psi] - kilo Pascal [kPa]	$\begin{aligned} & \text { Min.: } \\ & / \end{aligned}$
	Flow	Units of measurement available: - cubic metres per hour [m $\left.{ }^{3} / h\right]$ - litres per minute [$1 / \mathrm{min}$] - gallons per minute [gal/min]	
	Temperature	Units of measurement available: - degrees Celsius [${ }^{\circ} \mathrm{C}$] - farad [F] - degrees Kelvin [K]	Max.: /

Parameter	Description		Setting
3-6-3 Unit [c]	Setting of the physical quantity for the pressure:		Default: bar
	Function	Description	
	Bar	bar	Min.:
	Psi	pounds per square inch	
	kPa	kilo Pascal	Max.:
	Parameter visible if par 3-6-2 is set on "Pressure".		
3-6-4 Flow unit [c]	Setting of the physical quantity for the flow rate:		Default: $\mathrm{m}^{3} / \mathrm{h}$
	Function	Description	
	m ${ }^{3} / \mathrm{h}$	cubic metres per hour	Min.: /
	I/min	litres per minute	
	$\mathrm{gal} / \mathrm{min}$	gallons per minute	Max.: /
	Parameter visible if par 3-6-2 is set on "Flow".		
3-6-5 Temperature unit [c]	Setting of the physical quantity for the temperature:		Default: ${ }^{\circ} \mathrm{C}$
	Function	Description	
	 		Min.:/
	F \quad Far	Farad	
	K Kelv	Kelvin	Max.: /
	Parameter visible if par 3-6-2 is set on "Temperature".		
3-6-6 PID setpoint source [c]	Select the source for the reference of the process PID:		Default: Manual
	Function	Description	
	Manual	The setpoint is entered manually in parameter 3-6-7.	
	Analog input 1	The setpoint is acquired as a [\%] of the value of analog input 1. The percentage is calculated based on the type of analog used (e.i. par. 3-4-$1-1=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	
	Analog input 2	The setpoint is acquired as a [\%] of the value of analog input 2. The percentage is calculated based on the type of analog used (e.i. par. 3-4-$1-4=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%)$.	Min.: / /
	Analog input 3	The setpoint is acquired as a [\%] of the value of analog input 3. The percentage is calculated based on the type of analog used (e.i. par. 3-4-$1-4=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$). Parameter visible with IO "FX-I/O-A" expander board connected.	Max.:/
	Frequency input	The setpoint is acquired from the frequency input.	
	Remote	The setpoint is acquired from fieldbus communication.	

Section 3-6-7: Manual setpoint

In this section are contained the parameters to set the setpoint used in "Manual" mode of the process PID. It is possible to select the desired setpoint via digital inputs configured with the "PID Multireference Bit0/1/2" function. With digital input disabled or not configured the PID will work with the parameter 3-6-7-1 "Manual setpoint 1"; with at least an active output the process PID setpoint will be selected as in the table below.

To select the various Multireference, setup 3 digital inputs respectively as "MultiReference Bit0", "MultiReference Bit1" e "MultiReference Bit2". The selection occurs as in the table below:

Active selection	PID Multireference Bit2	PID Multireference Bit1	PID Multireference Bito
Manual setpoint 1	0	0	0
Manual setpoint 2	0	0	1
Manual setpoint 3	0	1	0
Manual setpoint 4	0	1	1
Manual setpoint 5	1	0	0
Manual setpoint 6	1	0	1
Manual setpoint 7	1	1	0
Manual setpoint 8	1	1	1

Parameter	Description	Setting
$3-6-7-1$ Manual setpoint 1 [c]	Manual setting of the process PID setpoint 1. Parameter visible if par. 3-6-6 is set to "Manual". The unit of measurement depends on par. 3-6-2.	$\begin{aligned} & \text { Default: } \\ & 0.0 \text { [\%] } \end{aligned}$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: 100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $\left.350.0{ }^{\circ} \mathrm{C}\right]$
$\begin{aligned} & \text { 3-6-7-2 } \\ & \text { Manual setpoint } 2 \end{aligned}$	Manual setting of the process PID setpoint 2. Parameter visible if par. 3-6-6 is set to "Manual". To enable it setup "PID MultiReference Bit0/1/2" on the Din inputs. The unit of measurement depends on par. 3-6-2.	$\begin{array}{\|l\|} \hline \text { Default: } \\ 0.0 \text { [\%] } \\ \hline \end{array}$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
[c]		Max.: 100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $\left.350.0{ }^{\circ} \mathrm{C}\right]$

Parameter
Description
Setting
3-6-7-3
Man
[c]
Manual setting of the process PID setpoint 3.
Parameter visible if par. 3-6-6 is set to "Manual".
To enable it setup "PID MultiReference Bit0/1/2" on the Din inputs.
lanual setpoint 3
The unit of measurement depends on par. 3-6-2.
0.0 [\%]

Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
Max.:
100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\circ} \mathrm{C}\right]$

3-6-7-4
Manual setpoint 4

[c]

$3-6-7-5$

3-6-7-5
Manual setpoint 5
[c]
ner

3-6-7-6
Manual setpoint 6
[c]
Manual setting of the process PID setpoint 6.
Parameter visible if par. 3-6-6 is set to "Manual".
To enable it setup "PID MultiReference Bit0/1/2" on the Din inputs.
The unit of measurement depends on par. 3-6-2.

Default: 0.0 [\%] Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
Max.:
100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\circ} \mathrm{C}\right]$ Default: 0.0 [\%] Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
Max.: 100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\circ} \mathrm{C}\right]$
Default:
0.0 [\%] Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
Max.:
100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\circ} \mathrm{C}\right]$

Parameter
Description
Setting

$3-6-7-7$ Manual setpoint 7	Manual setting of the process PID setpoint 7. Parameter visible if par. 3-6-6 is set to "Manual". To enable it setup "PID MultiReference Bit $0 / 1 / 2$ " on the Din inputs. The unit of measurement depends on par. 3-6-2.	$\begin{array}{\|l\|l} \hline \text { Default: } \\ 0.0 \text { [\%] } \end{array}$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
[c]		$\begin{aligned} & \hline \text { Max.: } \\ & 100.0[\%] \\ & 999.9[\mathrm{bar}] \\ & 9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right] \\ & 350.0\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$
3-6-7-8 Manual setpoint 8 [c]	Manual setting of the process PID setpoint 8 . Parameter visible if par. 3-6-6 is set to "Manual". To enable it setup "PID MultiReference Bit0/1/2" on the Din inputs. The unit of measurement depends on par. 3-6-2.	$\begin{aligned} & \text { Default: } \\ & 0.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 0.0[\%] \\ & -1.0[\mathrm{bar}] \\ & 0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right] \\ & -200\left[{ }^{\circ} \mathrm{C}\right] \\ & \hline \end{aligned}$
		Max.: 100.0 [\%] 999.9 [bar] $\begin{aligned} & 9999.9\left[\mathrm{~m}^{3 /} / \mathrm{h}\right] \\ & 350.0\left[{ }^{\mathrm{C}}\right] \\ & \hline \end{aligned}$
3-6-8 Maximum setpoint value [c]	Parameter for setting the maximum value of the analog setpoint. Parameter visible if par. $3-6-6$ is set at any setting but "Manual". The unit of measurement depends on par. 3-6-2.	$\begin{array}{\|l\|} \hline \text { Default: } \\ 100.0 \text { [\%] } \\ \hline \end{array}$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: 100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\mathrm{C}}\right]$
3-6-9 Minimum setpoint value [c]	Parameter for setting the minimum value of the analog setpoint. Parameter visible if par. 3-6-6 is set at any setting but "Manual". The unit of measurement depends on par. 3-6-2.	$\begin{aligned} & \text { Default: } \\ & 0.0 \text { [\%] } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 0.0[\%] \\ & -1.0[\mathrm{bar}] \\ & 0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right] \\ & -200\left[{ }^{\circ} \mathrm{C}\right] \end{aligned}$
		Max.: 100.0 [\%] $999.9[\mathrm{bar}]$ $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\mathrm{C}}\right]$

REEL

Parameter		Description	Setting
3-6-10 PID feedback source [c]	Select the source for the PID feedback:		Default: Analog input 2
	Function	Description The setpoint is acquired as a [\%] of the value of analog input 1. The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-1 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	
	Analog input 1		
	Analog input 2	The setpoint is acquired as a [\%] of the value of analog input 2. The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-1 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	Min.: /
	Analog input 3	The setpoint is acquired as a [\%] of the value of analog input 3 . The percentage is calculated based on the type of analog used (e.i. par. 3-4-1-1 $=0-10 \mathrm{~V}, 0 \mathrm{~V}=0 \%$ and $10 \mathrm{~V}=100 \%$).	Max.: /
	Frequency input	The setpoint is acquired from the frequency input.	
3-6-11 Maximum feedback value [c]	Parameter for setting the maximum value for the analog feedback. The unit of measurement depends on par. 3-6-2.		$\begin{aligned} & \text { Default: } \\ & 100.0 \text { [\%] } \end{aligned}$
			Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
			Max.: 100.0 [\%] 999.9 [bar] 9999.9 [$\mathrm{m}^{3} / \mathrm{h}$] 350.0 [${ }^{\circ} \mathrm{C}$]
3-6-12 Minimum feedback value [c]	Parameter for setting the minimum value for the analog feedback. The unit of measurement depends on par. 3-6-2.		$\begin{aligned} & \text { Default: } \\ & 0.0 \text { [\%] } \end{aligned}$
			Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
			Max.: 100.0 [\%] 999.9 [bar] $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\circ} \mathrm{C}\right]$
3-6-13 PID feedback scaling [c]	Process feedback scaling factor. Examples: - K Feedback = 1 "unit weight ": the feedback corresponds to the setpoint. - K Feedback $=0.5$ "weight 0.5 ": 100% feedback feeds back 50% of the setpoint. - K Feedback = 5 "weight 5": 20% feedback feeds back 100% of the setpoint.		$\begin{aligned} & \text { Default: } \\ & 1.0 \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { Min. } \\ 0.0 \end{array}$
			Max.: 9999.0

REEL

Parameter
3-6-14
Proportional gain

[c]

3-6-15
 Integral time

[c]

3-6-16
Derivative time
[c]
]

Description
Proportional constant used by the process PID controller. The greater this value, the more reactive the controller. Values that are too high can, however, lead to oscillations in the system.

Setting
Default:

Section 3-6-17: Maximum output value

In this section it is possible to set the process PID's maximum output value. This value will be set in parameter 3-6-17-2 in the case that the parameter 3-6-17-1 is set to "Manual", while it will be calculate in the same way of speed reference (refer to section 3-5 fig.9) if the parameter 3-6-17-1 is set to "Speed reference"

Parameter		Description	Setting
3-6-17-1 Maximum output reference source $[\mathrm{c}]$	Parameter for the setting of the output reference maximum value source.		Default: Manual
	Function	Description	
	Manual	The maximum output reference value will be set in parameter 3-6-17-2	Min.: /
	Speed reference	The maximum output reference value will be calculate in the same way of speed reference (refer to section 3-5 fig.9)	
			Max.: /
3-6-17-2 Maximum output reference value $[\mathrm{c}]$	Parameter for setting the maximum value of the output reference. The unit of measurement depends on par. 3-1-1.		$\begin{aligned} & \text { Default: } \\ & 50.0[\mathrm{~Hz}] \\ & \hline \end{aligned}$
			Min.: Par. 3-6-18
			Max.: Par. 3-2-3-4

Section 3-6-18: Minimum output value

In this section it is possible to set the process PID's minimum output value. This value will be constant in the event that only the parameter 3-6-18-1 is set, while it will be variable in the event that also the parameter 3-6-18-2 is set to a value higher than "Minimum value 1 ". In this case the minimum value will be calculated according to the process PID setpoint following the formula below:

$$
\text { Min. output value }=\text { Min. value } 1+\text { Actual Setpoint } * \frac{\text { Min. value } 2-\text { Min. value } 1}{\text { Max. Feedback value }- \text { Min Feedback value }}
$$

Parameter	Description	Setting
3-6-18-1 Minimum value 1 [c]	Parameter for the setting of the output reference minimum value. The unit of measurement depends on par. 3-1-1.	Default: 0.0
		Minz.: Par. 3-2-3-3
3-6-18-2 Minimum value 2 [c]	Parameter for the setting of the output reference minimum value. The unit of measurement depends on par. 3-1-1. Par. 3-6-17	

Section 3-6-19: PID congruence control

This function disables the drive if the feedback of the process PID can't reach the expected setpoint.
Used to highlight any system faults.

Parameter	Description	Setting
3-6-19-1 Congruence Time [c]	Time for PID congruence detection [sec]. If after this time the feedback of the process PID has not reached the value set in parameter 3-6-19-2 and/or the error between Setpoint and Feedback is higher than the value set in parameter 3-6-19-3, the inverter trips alarm A21 "Process PID Congruence". If set at 0 the "PID congruence control" is disabled.	Default: 60 [sec]
		Min.: 0 [sec]
		Max.: 300 [sec]
3-6-19-2 PID minimum feedback value [c]	Minimum value that Feedback of the Process PID must reach during operation. If it is not reached within the time set in 3-6-19-1 the inverter stops with alarm A21. The unit of measurement depends on par. 3-6-2.	$\begin{aligned} & \text { Default: } \\ & 0.0 \text { [\%] } \end{aligned}$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: par. 3-6-11
3-6-19-3 Delta Feedback threshold [c]	Maximum allowed error valuebetween Setpoint and Feedback of the Process PID during operation. If the error is higher than value set in this parameter for the time set in 3-6-19-1 the inverter stops with alarm A21. The unit of measurement depends on par. 3-6-2.	Default: $0.0 \text { [\%] }$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: par. 3-6-11

Section 3-6-20: Standby

This function disables the drive if the process PID controls a frequency that is lower than the output value set in par. 3-6-20-3 for a time set in par. 3-6-20-1. The drive disables and displays the warning W14 "Process PID standby". The inverter is enabled again when the feedback value drops below the setpoint by a percentage set in par. 3-6-20-2.

Parameter	Description	Setting
3-6-20-1 Standby time [c]	Standby function activation time [sec]. If after this time the PID is working at the minimum set frequency, the inverter signals warning W14 "Standby" and resets the speed reference. If set at 0 the function is disabled.	Default: 10 [sec]
		Min.: 0 [sec]
		$\begin{aligned} & \text { Max.: } \\ & 300 \text { [sec] } \end{aligned}$
$3-6-20-2$ Standby hysteresis [c]	Hysteresis value to exit the standby state. When the difference between the setpoint and the feedback exceeds the value indicated in this parameter, the drive resumes normal operation. The unit of measurement depends on par. 3-6-2.	Default: 0.0 [\%]
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: par. 3-6-11

Section 3-6-20-3: Stand-by speed

In this section it is possible to set the frequency value from whence the stand-by condition intervention's count starts. With the only parameter 3-6-20-3-1 set, that frequency value results fixed, while it will be variable according to the process PID setpoint, when $3-6-20-3-2$ is set to a value superior than "Stand-by speed 2", following the formula below:

$$
\text { Standby speed }=\text { Standby speed } 1+\text { Actual setpoint } * \frac{\text { Standby speed } 2-\text { Standby speed } 1}{\text { Maximum feedback value }- \text { Minimum feedback value }}
$$

In the event that both values are null, the frequency value will be the minimum active output value.

Parameter	Description	Setting
$3-6-20-3-1$ Velocità di stand-by 1 [c]	Parametro per l'impostazione della velocità 1 alla quale inizia il conteggio del "tempo di stand-by". L'unità di misura dipende dal par. 3-1-1.	$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \\ & \hline \end{aligned}$
		Min.: Par. 3-6-18
		Max.: Par. 3-6-17
3-6-20-3-2 Velocità di stand-by 2 [c]	Parametro per l'impostazione della velocità 2 alla quale inizia il conteggio del "tempo di stand-by". L'unità di misura dipende dal par. 3-1-1.	$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \\ & \hline \end{aligned}$
		Min.: Par. 3-6-18
		Max.: Par. 3-6-17

The advanced Stand-by function allows the correct Stand-by condition recognition even in those conditions where the process PID is not able to discern the need to stop the inverter. Those conditions may occur when an output frequency variation doesn't correspond anymore to the feedback value variation we want to adjust.

Specifically, if the feedback actual value remains around the $15[\%]$ of the setpoint for the time expressed in par. 3-6-20-4-4 "Interval time for Stand-by check", the drive will increase the setpoint of the value set in par. 3-6-20-4-2 "Delta reference" for the time expressed in par. 3-6-20-4-6 "Time for delta reference".
If at the end of the procedure the Stand-by conditions will occur the drive will be stopped, otherwise the procedure will be repeated after a time expressed in par. 3-6-20-4-4 "Interval time for Stand-by check".

Parameter	Description	Setting	
3-6-20-4-1 Advanced Stand-by enabling [c]	Advanced Stand-by function enabling.	Function	Description
	Off	Function disabled.	Off

3-6-20-4-2 Delta reference [c]	Parameter for the setting of the actual setpoint's periodic increase width. The unit of measurement depends on par. 3-6-2.	$\begin{aligned} & \hline \text { Default: } \\ & 0.75 \% \\ & \hline \end{aligned}$
		Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
		Max.: 10.0 [\%] 99.9 [bar] $999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $\left.35.0{ }^{\circ} \mathrm{C}\right]$
3-6-20-4-3 Time for delta reference [c]	Parameter for the setting of the time when the process PID applies the setpoint increase.	$\begin{aligned} & \text { Default: } \\ & \text { 3.0s } \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 1.0 \mathrm{~s} \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & \text { 30.0s } \end{aligned}$
3-6-20-4-4 Interval time for stand-by check [c]	Parameter for the setting of the time interval when the process PID will make the stand-by advanced control by applying the delta reference.	$\begin{aligned} & \text { Default: } \\ & 30.0 \mathrm{~s} \end{aligned}$
		$\begin{aligned} & \hline \text { Min.: } \\ & \text { 10.0s } \\ & \hline \end{aligned}$
		Max.: 600.0s

Section 3-6-21: Multi-drive

The Multi-Drive function enables control of several motors with a single "Master". The switch to the next drive control in the system, if present, occurs if the drive modulation is already operating at the maximum value set in par. 3-6-17 and the error between process feedback and setpoint is above the threshold set in par. 3-6-21-5 for a time set in par. 3-6-21-6.
The waiting time is ignored if, once the maximum speed is reached, the error between setpoint and feedback is greater than parameter 3-6-21-7.

The switch back to the preceding drive control in the system, if present, occurs in a similar way when the drive modulation is operating at the minimum value set in par. 3-6-17 for a time defined in par. 3-6-21-8.
If the standby function is active on the drive at minimum speed, the drive will be stopped and the warning will be displayed.

Two operating modes are available:
"Master Control" and "Cascade Control".

- Master Control

The "Master Control" operating mode involves the use of 2 or more FlexiMova drives, with a maximum of 6 drives in all, connected to each other through serial transmission.
The drives must be connected to each other via the RS485 ports located on the "FX-I/O-B" or "FX-I/O-C" expander boards that are configured for the "Multi-Drive" function (Dip switch "485SELECT" set at "ON").

The drive hierarchy is defined in par. 3-6-21-2 (Master, Slave 1...5). The signals for the remote controls (setpoint source, feedback source and digital inputs) must be connected to the drive configured as "Master".

Two types of redundancy are implemented:

- In the event of a "Master" drive fault, the drive configured as "Slave1 (secondary Master)" takes control of the system. Therefore the remote control signals and the main process PID parameters (setpoint/feedback source or constant and manual setpoints) should also be connected to this drive. If the "Master" drive resumes correct operation, after a re-synchronization procedure, it will take control of the system.
- The process PID feedback can be installed on any of the drives. In the event of a feedback fault connected to the "Master" drive, the reading is done by any operational sensor of the unit.

In this mode it is also possible to activate the "drive alternation" function to ensure uniform wear and tear of the system (Par. 3-6-21-4).

- Cascade Control

The "Cascade Control" mode involves the use of one FlexiMova drive and 1 or 2 fixed speed drives, connected to the dedicated terminals of the relay outputs on the multi-drive expander board.
In the "Cascade Control" mode it is necessary to set the number of relaycontrolled motors for in-line start at Par. 3-6-21-3.
To activate this function the fixed speed motors must firstly be connected through the relays present on the "FX-I/O-C" expander board. Once the connection has been made set the number of "Slave" drives present in the system in parameter 3-6-21-3 for in-line start.

Parameter
Description
Setting

$3-6-21-1$ Multi-drive mode [c]	Operating mode.		Defaul: Off
	Function	Description	
	Off	Multi-Drive function disabled.	Min.: /
	Master control	This mode involves the use of 2 or more FlexiMova drives, with a maximum of 6 drives in all, connected to each other through serial communication.	
	Cascade control	This mode involves the use of one FlexiMova drive and 1 or 2 fixed speed drives, connected to the dedicated terminals of the relay outputs on the multidrive expander board.	Max.:
3-6-21-2 Drive address [c]	Drive address in the multi-drive communication in "Master Control" mode.		Default: Slave 1 (secondary master)
	Function	Description	
	Master Slave 1 (secondary master)	Master drive in the Multi-Drive communication.	
		Slave drive in the Multi-Drive communication. If the event of a fault, the drive with the Slave 1 address becomes the master in the Multi-Drive communication to enable the unit to continue working. Redundancy of the cabling (if used) and the parameters between the "Master" drive and the "Slave1" drive is advisable.	Min.: /
	Slave 2	Slave drive in the Multi-Drive communication.	Max.: /
	Slave 3	Slave drive in the Multi-Drive communication.	
	Slave 4	Slave drive in the Multi-Drive communication.	
	Slave 5	Slave drive in the Multi-Drive communication.	
3-6-21-3 Number of connected slaves [c]	Number of drives connected in "Cascade Control" mode.		$\begin{aligned} & \text { Default: } \\ & 1 \\ & \hline \end{aligned}$
			Min.: 1
			$\begin{aligned} & \text { Max.: } \\ & 2 \end{aligned}$

Parameter		Description	Setting
3-6-21-4 Enable drive alternation [c]	Parameter for enabling/disabling the alternation function in "Master Control" mode. This function consists in operating the drives in ascending order according to the number of hours that the motor works, enabling the drives to work the same amount of time, thereby increasing the life of the unit.		
	Function	Description	
	Off	Function disabled. On request the drives that make up the unit will start according to the order of their addresses (Master, Slave1, Slave2...).	Max.: /
	On	Function enabled.	
3-6-21-5 Error threshold for next start [c]	Error threshold (calculated as: setpoint - feedback) beyond which the count begins to start the next drive. The unit of measurement depends on par. 3-6-2.		$\begin{aligned} & \text { Default: } \\ & 1.0[\%] \\ & \hline \end{aligned}$
			Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
			Max.: $100.0[\%]$ $999.9[\mathrm{bar}]$ $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\mathrm{C}}\right]$
3-6-21-6 Delay before start [c]	Delay for the start of the next drive.		$\begin{aligned} & \text { Default: } \\ & 3.0[\mathrm{sec}] \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { Min.: } \\ 0.0[\mathrm{sec}] \\ \hline \end{array}$
			Max.: 600 [sec]
3-6-21-7 Error threshold for immediate start [c]	Error threshold (calculated as: setpoint - feedback) beyond which the next drive starts without delays. The unit of measurement depends on par. 3-6-2.		$\begin{aligned} & \hline \text { Default: } \\ & 5.0 \text { [\%] } \\ & \hline \end{aligned}$
			Min.: 0.0 [\%] -1.0 [bar] $0.0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $-200\left[{ }^{\circ} \mathrm{C}\right]$
			Max.: $100.0[\%]$ $999.9[\mathrm{bar}]$ $9999.9\left[\mathrm{~m}^{3} / \mathrm{h}\right]$ $350.0\left[{ }^{\mathrm{C}}\right]$
3-6-21-8 Delay before stop [c]	Delay for stopping the controlled drive [s]. The count starts the moment the drive reaches the minimum reference set in parameter 3-6-18 "Minimum output value".		$\begin{aligned} & \hline \text { Default: } \\ & 3.0[\mathrm{sec}] \\ & \hline \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { Min.: } \\ 0.0[\mathrm{sec}] \\ \hline \end{array}$
			$\begin{aligned} & \hline \text { Max.: } \\ & 600 \text { [sec] } \\ & \hline \end{aligned}$

Section 3-7: Positioning controller

With "Positioning mode" (par. 3-7-1) enabled, the drive can control the motor in position control mode. This mode can be selected only if the motor control type is set to "Syncronous Reluctance Motor [SRM]"
It is necessary to define the permissible area for the movements in the "Positioning range" (par. 3-7-2-1) if limited by the physical nature of the structure (Figure 13) or unlimited, as in the case, for example, of conveyor belts, rotating axes, etc. (Figure 14).

Figure 13: Limited axis

To control the position it is necessary to acquire the HOME reference point (menu 3-7-3).

There are two possible modes of use:

- MDI (Manual Data Input) submode:

Figure 15: Position reference - MDI submode

The positioning parameters (steady state speed, acceleration, deceleration, position to reach) are entered "manually" via Fieldbus in the case of PROFIDrive standard telegram 9 and if using the Reel-specific command word.
-Program submode:

Figure 16: Position reference - program submode

The position to reach and the method for reaching it are described in a block of parameters that define a profile (menu 3-7-4). There are 8 profiles that can be memorised and it is possible to program positioning sequences by cascading several profiles. To execute a profile the commands from digital inputs "Posi commands..." are used or from Fieldbus only in the case of a PROFIDrive standard telegram 7 module.

The commands available to execute the positioning sequences are:

INFORMATION

The commands are active on the rising edge, with the exception of "Halt/Step".

The commands are active on the rising edge, with the exception of "Halt/Step".

- Posi Start: starts the positioning profile selected in Par. 3-7-2-12 "Initial profile selection". The "Start" command, given during a positioning sequence, interrupts the sequence and restarts the profile from the beginning.
- Posi Step: in a chain of profiles, enables switching to the next profile without any interruptions to the profile in progress. Par. 3-7-4-x-8 "Activation mode" must be set in "Step command".

If the positioner is not executing any sequences, the "Posi Step" command starts the profile that is currently selected, exactly like the "Posi Start" command.

Any "Wait" delays programmed between two successive profiles can be interrupted by the "Posi Step" command: the next programmed profile starts immediately.

If the positioning sequence is interrupted by a "Posi Halt" command or by the fact that the drive is disabled, it can be completed with the "Posi Step" command.

- Posi Next: in a chain of profiles, interrupts the profile in progress to execute the next profile in the chain. Par. 3-7-4-x-8 "Activation mode" must be set at "Next Command".
- Posi Halt: interrupts the positioning sequence in progress. The profile can be completed with a "Step" command. The "Start" command, vice versa, re-starts the sequence from the beginning, starting with the selected profile.
- Quick stop: completes the current positioning with maximum deceleration.
- Posi Tip+/Posi Tip-: execute a manual movement of the motor at the speed set in par. 3-7-2-11 "Fixed speed" in a positive or negative direction. The ramp specified in menu 3-3-2 is used. This function is useful for shifting the axis manually.
- If par. 3-7-2-11 "Fixed speed" is set at zero, as speed reference the main variable speed reference calculated according to the settings in menu 3-5 "References" is used.
- The movement occurs as long as Tip+ or Tip- are active.
- It is possible to activate control with Tip+ or Tip- if no profile is in progress and the positioner is in the HALTED state.

Start homing: starts the zero acquisition sequence (HOME). See menu 3-7-3.

- Teach in: the current position is saved in the selected profile through par. 3-7-2-12 "Initial profile selection" 1 10 Fieldbus, as position setpoint.

Halt/Step: combines the separate commands "Halt" and "Step" in a single input.
1 = Step
0 = Halt
Menu only visible in "SRM" control.
Parameter
Description
Setting

3-7-1 Positioning mode [c]	Parameter for selecting the type of positioning.		Default: Off
	Function	Description	
	Off	Positioner function disabled.	/
	Sensorless	Positioning is executed using a calculated position as feedback.	Max.: \| /

Section 3-7-2: Configuration

Parameter		Description	Setting
$3-7-2-1$ Positioning range [c]	Positioning range:		Default: Limited
	Function	Description	
	Limited	It is necessary to set the limits in parameters 3-7-2-6 "Maximum limit", 3-7-2-7 "Minimum limit"; that describe the axis travel limits. The movement area can also be limited by the limit switches (programmable as digital inputs, in menu 3-4-2-1 "Digital input functions", "Posi limit switch +", "Posi limit switch -") functions.	Min.: 1
	Unlimited	There is no physical limit (rotary axis function). The current position value repeats cyclically after a gap which is set in par. 3-7-2-9 "Circular length".	Max.: /
3-7-2-2 Move direction [c]	Selection of the permissible motion direction for unlimited positioning (par. 3-7-2-1 "Positioning range" set at "Unlimited").		Default: Both
	Function	Description	
	Both	The movement is permitted in both rotating directions.	Min.: /
	Positive	The movement is only permitted in a negative direction (clockwise rotation of the motor axis CW). A positive movement corresponds to an increment in the current position.	
	Negative	The movement is only permitted in a positive direction (counterclockwise rotation of the motor axis -CCW). A negative movement corresponds to a decrement in the current position.	Max.: /
3-7-2-3 Unit [c]	Unit of measurement to express positions:		Default: User unit
	Function	Description	
	User's unit	The unit of measurement is chosen by the user.	Min.: /
	Millimetres [mm]	Unit of measurement for linear positions.	Max.:
	Degrees [deg]	Unit of measurement for angular positions.	
3-7-2-4 Unit revolution numerator [c]	This is the numerator for the unit/rev p.u. It defines, together with parameter 3-7-2-5, the resolution for the position count. In one mechanical revolution of the motor, the actual position variable (par. 1-2-2-2) will adopt the value set in "Numerator revolution unit / Denominator revolution unit". The unit of measurement depends on par. 3-7-2-3 [unit/rev] or [$\mathrm{mm} / \mathrm{rev}$] or [$\mathrm{deg} / \mathrm{rev}$].		$\begin{aligned} & \text { Default: } \\ & 1024 \\ & \hline \end{aligned}$
			Min.: 0 [units/rev] 0 [mm/rev] 0 [deg/rev]
			Max.: 16384 [units/rev] 16384 [mm/rev] 16384 [deg/rev]

Parameter	Description	Setting
3-7-2-5 Unit revolution denumerator [c]	This is the denumerator of the unit/rev p.u.. It defines, together with parameter 3-7-2-4, the resolution for the position count.	Default: 1
		Min.: 0
		$\begin{aligned} & \text { Max.: } \\ & 16384 \end{aligned}$
3-7-2-6 Maximum limit [c]	Upper limit of the settable position setpoint. The unit of measurement depends on par. 3-7-2-3 [units] or [mm] or [deg].	$\begin{aligned} & \text { Default: } \\ & 65000000 \\ & \text { [units] } \\ & \hline \end{aligned}$
		Min.: par. 3-7-2-7
		Max.: 65000000 [units] 65000000 [mm] 65000000 [deg]
3-7-2-7 Minimum limit [c]	Lower limit of the settable position setpoint. The unit of measurement depends on par. 3-7-2-3 [units] or [mm] or [deg].	Default -65000000 [units]
		Min.: -65000000 [units] -65000000 [mm] -65000000 [deg]
		Max.: par. 3-7-2-6
3-7-2-8 Circular length [c]	The position zeroes if it reaches this maximum position value in the event of unlimited positioning. The unit of measurement depends on par. 3-7-2-3 [units] or [mm] or [deg]. Parameter visible with par. 3-7-21 "Positioning range" set at "Unlimited".	$\begin{aligned} & \text { Default: } \\ & 10000 \text { [units] } \end{aligned}$
		Min.: 0 [units] 0 [mm] 0 [deg]
		Max.: 3200000 [units] 3200000 [mm] 3200000 [deg]
$3-7-2-9$ Target window $[\mathrm{c}]$	Range within which the "position reached" message is given (Bit 6 of par. 1-2-2-3). The unit of measurement depends on par. 3-7-2-3 [units] or [mm] or [deg].	Default: 5 [units]
		Min.: $2[\mathrm{units}]$ $2[\mathrm{~mm}]$ 2 [deg]
		$\begin{aligned} & \text { Max.: } \\ & 10000 \text { [units] } \\ & 10000 \text { [mm] } \\ & 10000 \text { [deg] } \end{aligned}$
3-7-2-10 K soft positioning [c]	This is the speed percentage, with respect to the one defined in the active profile, at which the position control acts during positioning to soften the approach to the position setpoint to be reached.	$\begin{aligned} & \text { Default: } \\ & 5.0 \text { [\%] } \end{aligned}$
		Min.: 0.0 [\%]
		$\begin{aligned} & \text { Max.: } \\ & 100.0 \text { [\%] } \end{aligned}$

Parameter		Description	Setting
3-7-2-11 Tip speed [c]	This is the fixed speed in Tip Mode, it is used when "Posi Tipt" or "Posi Tip-" are active. If set to zero the main speed reference is used as the Tip speed. The unit of measurement depends on parameter 3-1-1 "Unit of measurement selection".		$\begin{array}{\|l\|l\|} \hline \text { Default: } \\ 0.0[\mathrm{~Hz}] \\ \hline \end{array}$
			Min.: $0.0 \text { [Hz]0 [rpm] }$
			Max.: par. 3-2-3-4
3-7-2-12 Initial profile selection [c]	Number of the profile that starts after the START command:		Default: Profile 1
	Function	Description	
	Digital input	The initial profile number is expressed as a binary number by the digital inputs set with the profile selection functions bit $0,1,2$. Profiles 1 to 8 are allocated to the number expressed as a binary number from 0 to 7 .	
	Profile 1	Profile 1 is executed.	Min.: /
	Profile 2	Profile 2 is executed.	
	Profile 3	Profile 3 is executed.	
	Profile 4	Profile 4 is executed.	Max.:1
	Profile 5	Profile 5 is executed.	
	Profile 6	Profile 6 is executed.	
	Profile 7	Profile 7 is executed.	
	Profile 8	Profile 8 is executed.	

Section 3-7-3: Homing

In this section several modes for acquiring the reference point are defined and selected in par 3-7-3-3:

- Home switch:

This means that the zero position (HOME) is identified by the rising edge of the digital input by the "Posi home switch" function (see menu 3-4-2-1 "Digital input functions"). The position defined in parameter 3-7-3-5 "Home position" is loaded at this point.
The rising edge of this signal identifies the zero position: the rising edge concerned relates to the preset zero search direction (par. 3-7-3-8 "Homing start direction").
Let's assume, for example, we have a positive direction, the following cases are possible:

Figure 17: Home switch - Positive homing start direction

Figure 18: Home switch - Negative homing start direction

In the following case, with a microswitch, a HW limit switch at least is also necessary, connected to a digital input programmed with "Posi limit switch +" or "Posi limit switch -" function (see menu 3-4-2-1 "Digital input functions") according to whether the search direction is positive or negative.

Figure 19: Home switch - Microswitch

- Limit switch:

This means that the zero position (HOME) is identified by the rising edge of a limit switch connected to a digital input programmed with the "Posi limit switch +" or "Posi limit switch -" function (see menu 3-4-2-1 "Digital input functions").
When the limit switch DIN is reached the position defined by parameter 3-7-3-5 "Home position" is loaded.
Management is similar to the previous one:

Figure 20: Limit switch

The search mode that can be selected in the case of limited positioning (par. 3-7-2-1 "Positioning range" set at "Limited").

- Mechanical stop:

This means that the zero position (HOME) is identified by a mechanical stop. When the end is reached the position setpoint in 3-7-3-5 "Home position" is loaded. For this type of search it is important to appropriately set parameter 3-7-3-4 "Mechanical stop current".

- Define home:

The "Start homing" command ensures that the value defined in parameter 3-7-3-5
"Home position" is adopted as the current position.
The drive must in any case be enabled.
It is important to also define the direction of the reference search, given in parameter 3-7-3-8 "Homing start direction", the coarse search speed par. 3-7-3-6 "First homing speed" and the fine speed par 3-7-3-7 "Second homing speed".

Note that if an unlimited type movement (par.3-7-2-1 "Positioning range" set at "Unlimited") is defined and only one motion direction (par. 3-7-2-2 "Motion direction" set on any other than "Both") is permitted, the reference search is carried out in the permitted direction, whatever the parameter 3-7-3-8 "Homing start direction", at the speed defined in par 3-7-3-7 "Second homing speed".

Parameter		Description	Setting
3-7-3-1 Power-On Homing [c]	Activation mode for the zero acquisition procedure:		Default: Disabled
	Function	Description	
	Disabled	Resetting only takes places manually with a "start homing" command via digital inputs or fieldbus.	Min.: /
	After start command	Resetting takes place after a START or STP command at the start.	
	After enabling	Resetting takes place automatically after the drive PWM has been enabled.	Max.: /
3-7-3-2 Homing request mode [c]	Modes for requesting the zero acquisition procedure:		Default: Off
	Function	Description	
	Off	The reset request only takes place manually with a "start homing" request via digital inputs or fieldbus.	Min.: I
	After disabling	The zero acquisition request takes place every time the drive is disabled.	Max.: /

REEL

Parameter	Description		Setting
3-7-3-3 Homing mode [c]	Modes for requesting the zero acquisition procedure:		Default: Home switch
	Function	Description	
	Home switch	Mode for "Home switch" zero acquisition procedure.	Min.: /
	Mechanical stop	Mode for "Limit switch" zero acquisition procedure.	
		Mode for "Mechanical stop" zero acquisition procedure.	Max.: /
	Define home	Mode for "Define home" zero acquisition procedure.	
3-7-3-4 Mechanical block current	The current limit for identifying the mechanical stop expressed in [A].		$\begin{aligned} & \text { Default: } \\ & 0.01[\mathrm{~A}] \end{aligned}$
			$\begin{aligned} & \text { Min.: } \\ & 0.00[\mathrm{~A}] \end{aligned}$
[c]			Max.: par. 3-2-3-2
3-7-3-5 Home position [c]	Value loaded as reference position after the acquisition of the home point. The unit of measurement depends on par. 3-7-2-3 [units] or [mm] or [deg].		Default: 0 [unità]
			Min.: par. 3-7-2-7
			Max.: par. 3-7-2-6
3-7-3-6 Homing speed fast [c]	This is the speed for the first phase for the coarse search of the zero position. Parameter only valid and visible if par. 3-7-2-2 "Motion direction" is set at "Both". The unit of measurement depends on parameter 3-1-1 "Speed unit of measurement".		$\begin{aligned} & \text { Default: } \\ & 3.0[\mathrm{~Hz}] \end{aligned}$
			Min.: $0.0[\mathrm{~Hz}]$ 0 [rpm]
			Max.: par. 3-2-3-4
3-7-3-7 Homing speed slow $[\mathrm{c}]$	The approaching speed to the zero position, for the fine acquisition. The unit of measurement depends on parameter 3-1-1 "Speed unit of measurement".		$\begin{aligned} & \text { Default: } \\ & 1.0[\mathrm{~Hz}] \end{aligned}$
			Min.: $0.0[\mathrm{~Hz}]$ 0 [rpm]
			Max.: par. 3-2-3-4
3-7-3-8 Homing start direction [c]	Direction to start searching for zero.		Default: Positive
	Function	Description	
	Digital input	The initial profile number is expressed as a binary number by the digital inputs set with the profile selection functions bit $0,1,2$. Profiles 1 to 8 are allocated to the number expressed as a binary number from 0 to 7 .	Min.: $/$
	Profile 1	Unit of measurement for linear positions.	

Parameter
3-7-3-9
Home profile
[c]

Function	Description	
Disabled	No profile is executed. At the end of the procedure the drive remains halted waiting for a "Start" or "Step" command.	$\begin{aligned} & \text { Min.: } \\ & / \end{aligned}$
Profile 1	Executes profile 1 at the end of the homing procedure.	
Profile 2	Executes profile 2 at the end of the homing procedure.	
Profile 3	Executes profile 3 at the end of the homing procedure.	
Profile 4	Executes profile 4 at the end of the homing procedure.	$\begin{aligned} & \text { Max.: } \\ & / \end{aligned}$
Profile 5	Executes profile 5 at the end of the homing procedure.	
Profile 6	Executes profile 6 at the end of the homing procedure.	
Profile 7	Executes profile 7 at the end of the homing procedure.	
Profile 8	Executes profile 8 at the end of the homing procedure.	

Number of the profile that is automatically started after the reference acquisition step. It is useful for moving the system to the predefined position.

Setting

Section 3-7-3-10: Continuous referencing

Function that enables the cyclical correction of the current position value with the value contained in parameter 3-7-3-10-4 "Switch position" at the rising edge of a digital input set with the "Posi Continuous ref. switch" function (see menu 3-4-2-1 "Digital input functions").

To enable this function it is necessary to:

- program a digital input with the "Posi Continuous ref. switch" function;
- enable the function through parameter 3-7-3-10-1 "Enable continuous reference";
- set parameter 3-7-3-10-4 "Switch position" with the desired real value to be loaded on the current position when "reference switch" DIN is reached.

In the case of a limited axis (par. 3-7-2-1 "Positioning range" set at "Unlimited"), it is important to also define the direction that you want the rising edge of the digital input to be intercepted; set this information in parameter 3-7-3-10-3 "Continuous reference direction".
Define the permissible tolerance window in parameter 3-7-3-10-2 "Switch acceptance window". If at the transition to the digital input, the value calculated by the positioner differs from the position set in par. 3-7-3-10-4 "Switch position" by a value that is greater than the parameter 3-7-3-10-2 "Switch acceptance window", then alarm A23 "Position error out of range" is generated.
Keep in mind that the reference microswitch must be positioned approximately $1 / 2$ way along the target position and in any case before the point at which the ramp stops when the position is reached.

Figure 21: Continuous referencing

Parameter		Description	Setting
3-7-3-10-1 Continuous reference enable [c]	Enabling of the "Continuous referencing" function.		Default: Off
	Function	Description	
	Off	"Continuous reference" function disabled.	Min.:
	On	"Continuous reference" function enabled.	Max.:
3-7-3-10-2 Continuous reference window [c]	If at the rising edge of the digital input, programmed with "Posi continuous reference switch" function, the real position is beyond the range expressed by this parameter, then alarm A23 "Position error out of range" is generated. Unit of measurement depends on parameter 3-7-2-3 [units] or [mm] or [deg]. Parameter visible "Continuous reference" function enabled.		Default: 100 [units]
			Max.: 32000 [units] 32000 [mm] 32000 [deg]
3-7-3-10-3 Continuous reference direction [c]	Direction in which the rising edge of the digital input is intercepted.		Default: Positive
		Description	
	Positive	The rising edge of the digital input is intercepted during a positive movement. (CW rotation of the motor).	Min.: /
	NegativeTh a	The rising edge of the digital input is intercepted during a negative movement. (CCW rotation of the motor).	Max.: /
	Parameter visible with par. 3-7-2-1 "Positioning range" set at "Limited" and "Continuous reference" function enabled.		
3-7-3-10-4 Continuous reference position [c]	The value of the position that is loaded as current position at the rising edge of the digital input programmed with the "Posi continuous reference switch" function. The unit of measurement depends on parameter 3-7-2-3 [units] or [mm] or [deg]. Parameter visible with "Continuous reference enabled".		Default: 0 [units]
			Min.: par. 3-7-2-7
			Max.: par. 3-7-2-6

Section 3-7-4: Profiles

8 memorisable profiles are available.
It is possible to program positioning sequences by cascading several profiles.

Section 3-7-4-x: Profile x (with " x " from 1 to 8)

Parameter	Description		Setting
$3-7-4-x-1$ Positioning mode [c]	Enabling of the "Continuous reference" function.		Default: Relative
	Function	Description	
	Relative	The position entered in parameter 3-7-4-x-2 "Position setpoint" refers to the current position.	Min.:
	Absolute	The position entered in parameter 3-7-4-x-2 "Position setpoint" refers to the absolute zero, determined during calibration.	
	Positive continuous	Only speed control is executed; the axis always moves in a positive direction (CW).	Max.:\|/
	Negative continuous	Only speed control is executed; the axis always moves in a negative direction (CCW).	
$3-7-4-x-2$ Position set	Position setpoint to reach. Unit of measurement depends on parameter 3-7-2-3 [units] or [mm] or [deg].		Default: 0 [units]
			Min.: par. 3-7-2-7
			Max.: par. 3-7-2-6
$3-7-4-x-3$ Speed [C]	Positioning steady state speed in [Hz] or [rpm]. The unit of measurement depends on parameter 3-1-1 "Speed unit of measurement".		$\begin{aligned} & \text { Default: } \\ & 0.0[\mathrm{~Hz}] \\ & \hline \end{aligned}$
			Min.: $0.0[\mathrm{~Hz}]$ 0 [rpm]
			Max.: par. 3-2-3-4
$3-7-4-x-4$ Acceleration time [c]	Acceleration ramp time. The motor will employ the time expressed in this parameter to go from zero to the maximum speed expressed in the parameter 3-2-3-4 "Maximum motor speed".		Default: $3.0 \text { [sec] }$
			Min.: $0.0 \text { [sec] }$
			Max.: 600 [sec]
$3-7-4-x-5$ Deceleration time [c]	Deceleration ramp time. The motor will employ the time expressed in this parameter to go from the maximum speed expressed in parameter 3-2-3-4 "Maximum motor speed" to zero.		Default: $3.0 \text { [sec] }$
			Min.: $0.0 \text { [sec] }$
			Max.: 600 [sec]
3-7-4-x-6 Number of repetitions [c]	Number of times that this profile is repeated. If set at 1 the profile will be executed twice. Parameter visible with par. 3-7-4-x-1 "Positioning mode" set at "Relative".		Default: 0
			$\begin{aligned} & \text { Min.: } \\ & 0 \end{aligned}$
			$\begin{aligned} & \text { Max.: } \\ & 16 \end{aligned}$

Parameter		Description	Setting
3-7-4-x-7 Next profile [c]	Contains the number of the profile that must follow the current one to execute the chain of several profiles.		Default: None
	Function	Description	
	None	The chain interrupts. The drive remains stopped in position.	Min.:
	Profile 1	The next profile in the chain will be profile 1.	
	Profile 2	The next profile in the chain will be profile 2.	
	Profile 3	The next profile in the chain will be profile 3.	
	Profile 4	The next profile in the chain will be profile 4.	
	Profile 5	The next profile in the chain will be profile 5 .	Max.: /
	Profile 6	The next profile in the chain will be profile 6.	
	Profile 7	The next profile in the chain will be profile 7.	
	Profile 8	The next profile in the chain will be profile 8.	
3-7-4-x-8 Start mode [c]	Contains the number of the profile that must follow the current one to execute the chain of several profiles.		Default: Step command
	Function	Description	
	Step command	Execution of the next profile is activated by the "Step" command.	
	Delay	Execution of the next profile is activated after a delay from the end of the execution of the current profile, set in parameter 3-7-4-x-9 "Delay next profile".	Min.: /
	Next command	Execution of the next profile is activated by the "Next" command.	Max.: /
	Parameter visible with par. 3-7-4-x-7 "Next profile" with a setting other than "None".		
3-7-4-x-9 Next profile delay [c]	Defines the delay in the activation of the next profile in [sec]. Parameter visible with par. 3-7-4-x-8 "Activation mode" set at "Delay".		Default: 0.0 [sec]
			Min.: 0.0 [sec]
			Max.: 600 [sec]

Section 3-8: Fieldbus

Section 3-8-1: ModBus

Parameter	Description	Setting
$3-8-1-1$ Slave address [c]	Parameter for setting the Modbus communication baud rate. Parameter expressed in [bit/s].	$\begin{aligned} & \text { Default: } \\ & 246 \end{aligned}$
		$\begin{aligned} & \text { Min.: } \\ & 1 \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 246 \end{aligned}$
3-8-1-2 Baud rate [c]	Parameter for setting the Modbus communication baud rate. Parameter expressed in [bit/s].	$\begin{aligned} & \text { Default: } \\ & 115200 \end{aligned}$
		$\begin{aligned} & \hline \text { Min.: } \\ & 9600 \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 115200 \end{aligned}$
3-8-1-3 Enable timeout alarm [c]	Parameter for enabling the modbus communication timeout alarm.	Default:0
	Function Description	
	Off \quad No alarms are triggered.	Min.: /
	On \quad If in the time set in par. 3-8-1-4 no exchange of information occurs on the modbus line the drive will stop and signal "A21".	Max.: /
3-8-1-4 Communication timeout [c]	Parameter for setting the modbus communication timeout time, expressed in [sec]. Parameter only visible if par. 3-8-1-3 is set at "On".	Default: 5.0 [sec]
		$\begin{aligned} & \text { Min.: } \\ & 1.0 \text { [sec] } \end{aligned}$
		$\begin{aligned} & \text { Max.: } \\ & 10.0[\mathrm{sec}] \end{aligned}$

Section 3-8-2: Profibus / Profinet

The parameters relevant to the operation of the optional fieldbus modules are described in the manuals listed at the beginning of this document.

Section 3-9: Safety functions

Section 3-9-1: STO Safe-Torque-Off

Parameter		Description	Setting
3-9-1-1 STO check request [c]	Parameter for enabling the request (Warning and Alarm) of the STO HW chain control.		Default: Off
	Function	Description	
	Off	Function disabled.	Min.: /
		The frequency converter will count the hours between one STO intervention and the next. When this interval exceeds the time indicated in parameter 3-9-1-2 alarm A27 is triggered. However, roughly one month before this expiry, warning W20 is signalled.	
			Max.: /

Parameter
3-9-1-2
STO interval check

[c]

Description
Indicates the time limit between one STO activation and the next. Once this time is exceeded the drive stops and signals alarm A27. Expressed in [h].

Setting
Default: 8760 [h] Min.: 744 [h] Max.: 1200000 [h]

Section 3-10: Electric gearbox

The macro controls the motor's angular position (phase control) by receiving externally a position setpoint to reach (electric gearbox master). It is possible to set a reduction ratio between the master speed and the drive (electronic gearbox) through par. 3-10-2-2, 3-10-2-3 and par. 3-10-2-4 that specifies the direction of the slave shaft with respect to the mastershaft.

The "Virtual master" electric gearbox mode, selectable through par. 3-10-1, is implemented. In this mode the internal position reference is obtained from the integration of the speed reference "Speed reference" of the drive itself (a virtual master is generated in the drive itself). In less critical applications, the same speed reference can be given to several drives, in this case, the only possible error can be caused by the precision of the internal clock of the control board. The figure below shows the diagram of the drive's position loop control. A description of the parameters that appear in the figure is given in the following paragraph.

Figure 22: Electric gearbox - Virtual master mode

3-10-1 Mode 	Operating mode.	Default:		
	Function	Description	Off	
	Off	Min.: Virtual master (speed ref.)	Enabling of "Virtual master" electric shaft mode.	Max.:

Section 3-10-2: Configuration

| Parameter | | |
| :--- | :--- | :--- | :--- |
| 3-10-2-2
 Speed ratio
 numerator
 [c] | Numerator of the reduction ratio between the master speed and
 the slave speed. | Default:
 1 |

Section 3-10-3: Controller settings

Parameter	Sescription	Default:
3-10-3-1 Kp	Proportional coefficient of the PI controller.	1000
[C]		Min.:

Section 4: Information

Section 4-1: Inverter

Parameter	Description	Setting
4-1-1 Serial number	Display string containing the converter's serial number.	Default:
		Min.:

Section 4-2: LCP

Menu only visible with an LCP module connected.

| Parameter | | |
| :--- | :--- | :--- | :--- |
| 4-2-1
 LCP serial number | Display string containing the LCP module's serial number. | Setting |

Section 4.3: Fieldbus

Menu only visible with a fieldbus module connected.

| Parameter | Description | Setting |
| :--- | :--- | :--- | :--- |
| 4-3-1
 Slot 1
 connected module | Display string containing the type of module connected in slot 1
 on the converter. | Default:
 Not connected |
| 4in.:
 Slot 2
 connected module | Display string containing the type of module connected in slot 2
 on the converter. | Max.:
 $/$ |

Section 4-3-3: Modbus module

Menu only visible with modbus module connected.

| Parameter | Description | Setting |
| :--- | :--- | :--- | :--- |
| 4-3-3-1
 Firmware version | Display string containing the Modbus module's firmware version. | Default: |

Section 4-3-4: Profibus module

Menu only visible with Profibus module connected.

| Parameter | | |
| :--- | :--- | :--- | :--- |
| 4-3-4-1
 Firmware version | Display string containing the Profibus module's firmware version. | Default:
 $/$ |

Section 4-3-5: Profinet module

Menu only visible with Profinet module connected.

| Parameter | | |
| :--- | :--- | :--- | :--- |
| 4-3-5-1
 Firmware version | Display string containing the Profinet module's firmware version. | Default: |
| $/$ | | |

4 LCP interface

Figure 23: LCP interface

Table 1: Description of the graphic control unit

Position	Denomination	Function
$\mathbf{1}$	Graphic display	Display provides information concerning the operation of the frequency converter.
$\mathbf{2}$	Menu buttons	Go to the elements of the first menu level: Operation, Diagnosis, Settings and Information.
$\mathbf{3}$	Navigation buttons	Navigation and setting of the parameters.
$\mathbf{4}$	Function buttons	Switching between operating modes.

4.1 Graphic display

The main screen is divided into six sections.

Figure 24: Graphic display

Table 2: Description of the graphic control unit

Section - Ref.	Function
$\mathbf{1}$	Macro/Functions enabled and operating details: PS: Position control active. PD: Process PID controller active. T: Torque control active. A: AMA procedure in progress. R: Drive in remote control mode (Fieldbus).
$\mathbf{2}$	Display of MAX. 4 operating values: one operating value is displayed in large font. 3 operating values are displayed in small font. The operating values scroll cyclically.
$\mathbf{3}$	Display of the operating status: LOCKED: Drive locked, enabling not possible. This occurs when an alarm has tripped or during the lock time following a disabling. STOP: PWM disabled, motor stopped. READY TO RUN: PWM enabled, motor stopped. RUN: PWM enabled, motor running. TUNING: AMA procedure in progress.
$\mathbf{4}$	Name of the parameter of the operating value displayed in the centre.
$\mathbf{5}$	Reference of the operating value parameter displayed in the centre.
$\mathbf{6}$	Operating mode.

Thegraphic control unit contains the buttons described in the following table:

Table 3: Description of the graphic control unit

| Button
 Op.
 Data | Denomination | Function |
| :---: | :--- | :--- | :--- |
| Alarm
 Log | Alarm Log menu button | Displays the operating data. |
| Main
 Menu | Main Menu button | Enables the main settings. |
| Info | Information menu button | Displays the alarm history log. |

4.2 Manual operation via LCP

INFORMATION

After a power outage, the product switches to "Off" mode. Restart in manual operating mode.

Table 4: Description of the graphic control unit

Button	Denomination	Function
Man On	Man operation On button	- When switching from "Auto On" operating mode to "Man On" mode the present speed of the current operation is confirmed and displayed as the speed reference (manual) 1-3-2. - When switching form "Off" to "Man On" operating mode the frequency converter operates at minimum speed.
	Arrow button	When the arrow buttons are depressed the speed reference (manual) $1-3-2$ is modified and confirmed immediately. The speed can only be modified between the preset minimum and maximum speed values.
Back OK	ESC/OK button	- The OK or Back buttons enable you to move from one character to another. - Press the "Back" button to go back to the preceding character. - Press the "Ok" button on the right digit to return to the main screen.

4.3 Menu buttons

The menu buttons enable direct access to the first menu level:

- Operating data $1-x-x-x$.
- Alarm $\log 2-x-x-x$.
- Main menu 3-x-x-x.
- Information $4-x-x-x$.

The parameter numbers contain the navigation path for quick and easy identification of a parameter. The first digit of the parameter number corresponds to the first menu level and is recalled directly via the menu buttons.

Figure 25: LCP module - Main menu

Table 5: LCP module - Main menu

Ref.	
$\mathbf{1}$	Name of current menu/parameters.
$\mathbf{2}$	Parameter reference for the parameter selected in the list.
$\mathbf{3}$	Submenu parameters/items selection list.

4.3.1 Menu: Operating data

The "Operating data" section includes all the information necessary for the operation of the machine and the processes:

- Registration on the device with a password.
- Operating and measuring values for motor, pump and system frequency converter.
- Nominal values, control values and setting values.
- Hours of operation.

4.3.2 Menu: Alarm log

In the "Alarm log" section the operator can obtain information relating to fault alerts and alarm warnings in the inverter or process. The product can be stopped (faults) or running (warnings). All the previous messages can also be found in the Alarm history.

All the monitoring and protection functions generate warning or alarm messages which are signalled by red and yellow LEDs on the LED signal strip.
The corresponding message appears on the display of the control unit. If there are several messages present only the most recent is displayed. Alarms have priority over warnings.

Figure 26: LCP module - Alarms display

Table 6: LCP module - Alarm display

Ref.	Function
$\mathbf{1}$	Name of the message displayed in the centre.
$\mathbf{2}$	Message display: the last message is displayed in large font on the main screen. The operating values are displayed in small font.

Active alarms

If a message has appeared it can be found in the "Alarm history" menu in 2-1 "Active alarms". Any information relating to alarms and alerts can also be switched to the relay outputs.

Alarm history

Only the reset and obsolete alerts can be found in the Alarm History.
The alarms chronology can be displayed by selecting parameter 2-2 "Alarm history". The last 100 messages are listed here. Use the arrow keys and the OK button to, select an item from the list.

Reset Alarms

If the cause that generated the alert is no longer present then it can be reset. The alerts can be reset separately in menu 2 "Alarm log". The alert can also be reset through a digital input. Digital input 2 has been provided for this purpose. For an overview of the alarm and warning alerts (see chap. 5).
The alerts can be reset as indicated in Table 7.

Table 7: Alert silencing methods

Alert property	Type of reset
Automatic Reset	The alert is reset automatically when the condition that generated it is no longer present.
Configurable Reset	Select either manual or automatic reset with configurable times in 2-4.
Manual Reset	Reset action must be manual.

4.3.3 Main menu

Basic process settings can be set or optimised in the "Main menu" section.
Up to 4 operating values can be displayed simultaneously on the main screen:

- 1 operating value, in large font, is displayed with the name and the number of the parameter and the unit of measurement.
- 3 operating values, in small font, displayed with the corresponding unit of measurement.

The arrow buttons enable rotation of the operating values. Each operating value passes through all the display positions.
Up to a maximum of 10 operating values can be defined for display from the predetermined list.
The sequence of the selection list determines the sequence of the operating values on the main screen. If more than 4 parameters are selected, the parameters that are not visible rotate in the background.

You can set the variables to be displayed:

1) In the Settings menu, open parameters 3-1-10.
2) With the arrow buttons select the operating value to reproduce.
3) Press the OK button.
4) Select the other desired operating values in the list and confirm by pressing OK.

Figure 27: Main menu

4.3.4 Information menu

All the information on the product and important information on the firmware version can be found in the "Info" section.

4.4 Service Interface and LED Coding

Figure 28: Service interface and LED coding

Table 8: LED coding

Ref.	Denomination	Function
$\mathbf{1}$	Service interface	Optical interface.
$\mathbf{2}$	LED signal lights	The lights indicate the operating state of the Inverter.

The unit can be connected to a PC or notebook with a special cable (USB - optical) using the Service interface.

The following operations are possible:

- Configuration and programming of the frequency converter with the support software.
- Updating of software.
- Saving and downloading parameters.
- Data Logger.

The special function enables the LEDs to indicate the operating state of the FlexiMova ${ }^{\oplus} \mathrm{mm}$.

Table 9: Description LED colours

Light colour	Description
Red	Indicates the presence of one or more fault messages (Alarm).
Yellow	Indicates the presence of one or more warning messages (Warning).
Green	Steady light: working correctly (Drive ok). Flashing light: motor running.

5 Troubleshooting

A Warning or Alarm is signalled by the LEDs installed on the Inverter body and by a code on the LCP.

The Warning remains active until the cause that generated it is no longer present. In Warning state the inverter can operate normally but it signals that operation is approaching the limits of an Alarm state.

If an Alarm is triggered the inverter disables the modulation.
The alarms can be reset manually through the LCP, digital inputs or fieldbus. Alternatively, the inverter can be configured to automatically reset the alarms in the mode described in parameter "2-4 Alarm reset mode".

If an alarm cannot be reset it may be because the cause that generated it is still present or it is the type of alarm that requires the inverter to be re-booted.

5.1 Alarms

Table 10: Alarms

Message	Denomination	Description	Type of reset
A1	Short circuit	Signals the presence of an inverter output short circuit, phase-phase or phase-earth.	Manual Reset (Default) or Configurable automatic reset. After the fourth consecutive reset in a period of 30 s a restart is necessary.
A2	Overcurrent	Inverter output overcurrent. Refers to parameter 3-2-3-2 "Maximum motor current".	Manual Reset (Default) or Configurable automatic reset. After the fourth consecutive reset in a period of 30 s a restart is necessary.
A3	IGBT overtemperature	Signals the Power circuitry is overheated.	Automatic reset.
A4	Control board Overtemperature	Signals the interior of the inverter is overheated.	Automatic reset.
A5	I2T overload protection	Signals that the preset I2T limit has been reached or the minimum speed limit (3-2-2-5) in the case that the speed reduction mode was selected.	Manual Reset (Default) or Configurable reset.
A6	PTC motor protection	Signals that the OHM threshold set in parameter 3-2-2-2 has been exceeded. The PTC sensor is read via the special terminal block and its value is visible in parameter 1-2-1-9.	Manual Reset (Default) or Configurable reset.
A7	External alert	Signals a digital input alarm.	Manual Reset (Default) or Configurable reset.
A8	Undervoltage	Signals undervoltage of the mains power.	Manual Reset (Default) or Configurable reset.

Message	Denomination	Description	Type of reset
A9	Overvoltage	Signals overvoltage of the mains power.	Manual Reset (Default) or Configurable reset.
A10	AMA error	Signals an error during the motor parameter auto-learning procedure.	Automatic reset.
A11	Brake resistor overload	Signals the out-of-range use of the dynamic braking resistor (if enabled).	Manual Reset (Default) or Configurable reset.
A12	Motor side phase loss	Signals an inverter output phase loss.	Manual Reset (Default) or Configurable reset.
A13	Line side phase loss	Signals an inverter input phase loss. This condition is only recognised on sizes 37 kW to 55 kW .	Manual Reset (Default) or Configurable reset.
A14	Broken signal cable	Signals no/broken analog input connection.	Automatic reset.
A15	Safety STO chain fault	Signals a serious fault in the STO safety chain.	Requires restarting the inverter.
A16	Lack of adequate motor data	Signals inconsistency in the configuration parameters of the REEL SuPremE ${ }^{\oplus} /$ SSP motors control.	Automatic reset.
A17	No advanced motor configuration	Signals the lack of advanced configuration for REEL SuPremE®/SSP motors.	Automatic reset.
A18	Hardware fault	Signals a generic alarm for the interior of the inverter.	Requires restarting the inverter.
A19	Undervoltage 24 V	Signals an internal power supply fault $24 \mathrm{~V} / 24 \mathrm{~V}$ USR.	Automatic reset.
A20	Internal voltage fault	Signals a fault in other internal power supplies of the inverters.	Automatic reset.
A21	Process PID congruence	Signals a failure in the process PID so that it is not possible to reach the desired Setpoint.	Manual Reset (Default) or Configurable reset.
A22	Positioner limit reached	Signals the detection of a digital input rising edge with positioner limit switch function.	Manual Reset.
A23	Out-of-range position error	Signals an out-of-range error for the position set in "Continuous reference of the positioner" mode.	Manual Reset.
A24	Fieldbus error	Signals an incorrect configuration or a generic fault of the fieldbus modules.	Automatic reset.
A25	Fieldbus communication timeout	Signals the detection of a communication timeout with the master.	Automatic reset.

Message	Denomination	Description	Type of reset
A26	Flying start error	Signals a fault during the procedure for the auto-recognition of the motor's initial rotating speed.	Automatic reset.
A27	STO control time elapsed	Signals that the time elapsed since the last STO activation has exceeded the permitted maximum and that it is necessary to command the activation of STO to reset the alarm.	Automatic reset.
A28	Multi-Drive communication timeout	Signals timeout of the Multi-Drive communication in the "slave" drive has elapsed.	Automatic reset.
A29	Electric shaft tracking error	Signals that the position error has exceeded the threshold set in parameter "3-10-2-5 Maximum position error".	Automatic reset.
A50	Firmware update required	Signals an inconsistency between the FW versions of the boards on the inverter.	Automatic reset.

5.2 Warning

Table 11: Warning

Message	Denomination	Function
W1	I2T overload protection	Signals that the I2T count has exceeded 5\% of the total count. The warning is removed when the count returns to zero.
W2	IGBT overtemperature	Signals that the power circuitry is overheated. It activates when the detected temperature is 10 degrees below the alarm threshold.
W3	Control board overtemperature	Signals that the control circuitry is overheated. It activates when the detected temperature is 10 degrees below the alarm threshold.
W4	Motor overtemperature	Indicates that the motor is overheated. The warning trips when it reaches 80\% of the threshold in [Ohm] set in par. 3-2-2-2 and reset when it returns 50\% of the threshold in [Ohm] set in par. 3-2-2-2. The reading of the PTC probe is carried out through the special terminal block and its value is displayed in parameter 1-2-1-9.
W5	Deceleration ramp limit	Signals that the time set for the deceleration ramp has been exceeded.
W6	Active speed reduction	Signals the motor speed reduction when required to reduce the delivered power.
W7	Undervoltage	Signals the undervoltage of the mains supply.
W8	Overvoltage	Signals the overvoltage of the mains supply.
W9	STO active	Signals the Safety STO status.
W10	High current	Signals that the inverter is at the controlled current limit.
W11		/

Message	Denomination	Function
W12	Default settings loaded	Signals default parameters downloaded to the inverter.
W13	Fieldbus communication timeout	Signals no communication with the Master.
W14	Process PID standby controller	Signals the process PID is in standby.
W15	Waiting for Homing procedure	Signals that there is no home position for the positioner. Perform a homing procedure to eliminate the warning. With the warning active the position controller is disabled.
W16	LCP 24 V overload	Signals an anomalous and persistent current draw from the LCP module power supply. The warning must be reset manually. The power supply is deactivated when the warning trips and reactivated after the warning has been reset.
W17	Fieldbus 24 V overload	Signals an anomalous and persistent current draw from one of the fieldbus modules' power supply. The warning must be reset manually. The power supply deactivates when the warning trips and re-activates after the warning has been reset.
W18	IO-Expander terminal block 24 V overload	Signals an anomalous and persistent current draw from the 24 V terminal on the terminal block of the IO-Expander. The warning must be reset manually. The power supply deactivates when the warning trips and re-activates after the warning has been reset.
W19	Control board terminal block 24 V overload	Signals an anomalous and persistent current draw from the 24 V terminal on the terminal block of the control board. The warning must be reset manually. The power supply deactivates when the warning trips and re-activates after the warning has been reset.
W20	STO control request	Signals a request to stop the STO to verify the correct functioning of the safety chain. An automatic auto-control is carried out and then the warning is reset. If this procedure is not carried out within a month from the appearance of the warning, alarm A27 will trip.
W21	Multi-Drive communication timeout	Multi-Drive communication timeout has elapsed in the "master" drive.
W22	Broken signal cable	No/broken 4-20 mA analog input connection, in the "Slave" drive of the Multi-Drive communication.

